Where Ignoring Delete Lists Works, Part II: Causal Graphs

Jörg Hoffmann

INRIA Nancy, France

June 14, 2011

Outline

- ▶ What happened?
- \triangleright On causal graphs and h^+
- ► Guaranteed global analysis
- Approximate local analysis
- Diagnosis
- Conclusion

Outline

- What happened?
- ▶ On causal graphs and h^+
- ► Guaranteed global analysis
- Approximate local analysis
- Diagnosis
- Conclusion

Where Ignoring Delete Lists Works

red: no local minima at all under h^+

Can we recognize this automatically?

Can we recognize this automatically?

Works only in trivialities; explodes quickly

2009

Luciana Benotti->

<-Carlos Areces

Shortly after the presentation. Carlos, Luciana, and Jörg sit around a table. The conversation goes like this:

Shortly after the presentation. Carlos, Luciana, and Jörg sit around a table. The conversation goes like this:

Carlos/Luciana: "When we made PDDL models, it was very hard to know how to design them so that planners would perform better. Couldn't one build a tool based on recognizing h⁺ toplogy?"

Shortly after the presentation. Carlos, Luciana, and Jörg sit around a table. The conversation goes like this:

Carlos/Luciana: "When we made PDDL models, it was very hard to know how to design them so that planners would perform better. Couldn't one build a tool based on recognizing h^+ toplogy?"

Jörg: "Oh yeah, I already tried that during my PhD, but it didn't work."

Shortly after the presentation. Carlos, Luciana, and Jörg sit around a table. The conversation goes like this:

Carlos/Luciana: "When we made PDDL models, it was very hard to know how to design them so that planners would perform better. Couldn't one build a tool based on recognizing h⁺ toplogy?"

Jörg: "Oh yeah, I already tried that during my PhD, but it didn't work."

Carlos/Luciana: "But couldn't we do something like XYZ?"

Shortly after the presentation. Carlos, Luciana, and Jörg sit around a table. The conversation goes like this:

Carlos/Luciana: "When we made PDDL models, it was very hard to know how to design them so that planners would perform better. Couldn't one build a tool based on recognizing h⁺ toplogy?"

Jörg: "Oh yeah, I already tried that during my PhD, but it didn't work."

Carlos/Luciana: "But couldn't we do something like XYZ?"

Jörg: "Hm I don't think so."

Shortly after the presentation. Carlos, Luciana, and Jörg sit around a table. The conversation goes like this:

Carlos/Luciana: "When we made PDDL models, it was very hard to know how to design them so that planners would perform better. Couldn't one build a tool based on recognizing h^+ toplogy?"

Jörg: "Oh yeah, I already tried that during my PhD, but it didn't work."

Carlos/Luciana: "But couldn't we do something like XYZ?"

Jörg: "Hm I don't think so."

Carlos/Luciana: " $\alpha\beta\gamma$ maybe?"

Shortly after the presentation. Carlos, Luciana, and Jörg sit around a table. The conversation goes like this:

Carlos/Luciana: "When we made PDDL models, it was very hard to know how to design them so that planners would perform better. Couldn't one build a tool based on recognizing h⁺ toplogy?"

Jörg: "Oh yeah, I already tried that during my PhD, but it didn't work."

Carlos/Luciana: "But couldn't we do something like XYZ?"

Jörg: "Hm I don't think so."

Carlos/Luciana: " $\alpha\beta\gamma$ maybe?"

...[45 minutes later] ...

9/23

Shortly after the presentation. Carlos, Luciana, and Jörg sit around a table. The conversation goes like this:

Carlos/Luciana: "When we made PDDL models, it was very hard to know how to design them so that planners would perform better. Couldn't one build a tool based on recognizing h^+ toplogy?"

Jörg: "Oh yeah, I already tried that during my PhD, but it didn't work."

Carlos/Luciana: "But couldn't we do something like XYZ?"

Jörg: "Hm I don't think so."

Carlos/Luciana: " $\alpha\beta\gamma$ maybe?"

... [45 minutes later] ...

Jörg: "Look, just consider Blocksworld and Logistics. One has local minima, the other doesn't. Still both have deletes."

Shortly after the presentation. Carlos, Luciana, and Jörg sit around a table. The conversation goes like this:

Carlos/Luciana: "When we made PDDL models, it was very hard to know how to design them so that planners would perform better. Couldn't one build a tool based on recognizing h^+ toplogy?"

Jörg: "Oh yeah, I already tried that during my PhD, but it didn't work."

Carlos/Luciana: "But couldn't we do something like XYZ?"

Jörg: "Hm I don't think so."

Carlos/Luciana: " $\alpha\beta\gamma$ maybe?"

... [45 minutes later] ...

Jörg: "Look, just consider Blocksworld and Logistics. One has local minima, the other doesn't. Still both have deletes."

Jörg: "And there is no other obvious difference in their structure . . . "

Shortly after the presentation. Carlos, Luciana, and Jörg sit around a table. The conversation goes like this:

Carlos/Luciana: "When we made PDDL models, it was very hard to know how to design them so that planners would perform better. Couldn't one build a tool based on recognizing h^+ toplogy?"

Jörg: "Oh yeah, I already tried that during my PhD, but it didn't work."

Carlos/Luciana: "But couldn't we do something like XYZ?"

Jörg: "Hm I don't think so."

Carlos/Luciana: " $\alpha\beta\gamma$ maybe?"

... [45 minutes later] ...

Jörg: "Look, just consider Blocksworld and Logistics. One has local minima, the other doesn't. Still both have deletes."

Jörg: "And there is no other obvious difference in their structure ..."

Jörg: "... x6 P T Causal graphs!!!"

Blocksworld, Logistics, Causal Graphs

The causal graph of Blocksworld contains cycles; h^+ local minima.

That of Logistics doesn't; h^+ no local minima.

Is there a general phenomenon behind this?

Outline

- ▶ What happened?
- ► On causal graphs and h⁺
- ► Guaranteed global analysis
- Approximate local analysis
- Diagnosis
- Conclusion

On causal graphs and h^+

Details:

[J. Hoffmann (2011). Analyzing Search Topology Without Running Any Search: On the Connection Between Causal Graphs and h⁺. Journal of Artificial Intelligence Research, Volume 41: 155-229. **June 2nd** U

On causal graphs and h^+

Details:

[J. Hoffmann (2011). Analyzing Search Topology Without Running Any Search: On the Connection Between Causal Graphs and h⁺. Journal of Artificial Intelligence Research, Volume 41: 155-229. **June 2nd** U

- Finite-domain vars ("SAS+") x_0, x_1, x_2
- ► Domain transition graphs
- ► Causal graph: top left
- ▶ Transitions invertible + no side effects
- ightharpoonup Red: need this; Blue: how to get it; Green: where we are (state s)
- "Start" state s is not a local minimum!
- ▶ State s_0 : $x_1 = c_1$ and $x_2 = c_2$

- Assume optimal relaxed plan $P^+(s)$ for s
- ▶ $P^+(s)$ must achieve c_1, c_2 via some paths T_1, T_2
- ▶ If we remain within these paths, h^+ never increases!

- Assume optimal relaxed plan $P^+(s)$ for s
- ▶ $P^+(s)$ must achieve c_1, c_2 via some paths T_1, T_2
- ▶ If we remain within these paths, h^+ never increases!
- ► Wlog $P^+(s) = \langle R1^+, R2^+, R3^+ \rangle \circ P^+$

- Assume optimal relaxed plan $P^+(s)$ for s
- $ightharpoonup P^+(s)$ must achieve c_1, c_2 via some paths T_1, T_2
- ▶ If we remain within these paths, h⁺ never increases!
- ► Wlog $P^+(s) = \langle R1^+, R2^+, R3^+ \rangle \circ P^+$
- $\blacktriangleright \mathsf{Say} \ s' := \mathsf{apply}(s, R1, R2, R3)$

- Assume optimal relaxed plan $P^+(s)$ for s
- $ightharpoonup P^+(s)$ must achieve c_1, c_2 via some paths T_1, T_2
- ▶ If we remain within these paths, h^+ never increases!
- ► Wlog $P^+(s) = \langle R1^+, R2^+, R3^+ \rangle \circ P^+$
- $\blacktriangleright \mathsf{Say} \ s' := \mathsf{apply}(s, R1, R2, R3)$
- $P^+(s') := \langle L3^+, L2^+, L1^+ \rangle \circ P^+$
- ▶ apply($s, R1^+, R2^+, R3^+$)[x_1] = { d_1, d_2, d_3, c_1 } = apply($s', L3^+, L2^+, L1^+$)[x_1]

Where Ignoring Delete Lists Works, Part II: Causal Graphs

► Say we're in s₀

- ► Say we're in s₀
- $ightharpoonup P^+(s_0) = \langle op_0^+ \rangle \circ P^+$, and (from prev arg) $|P^+(s_0)| \leq |P^+(s)|$

13/23

- ► Say we're in s₀
- $ightharpoonup P^+(s_0) = \langle op_0^+ \rangle \circ P^+$, and (from prev arg) $|P^+(s_0)| \leq |P^+(s)|$
- $ightharpoonup op_0$ is applicable now, leading to s_1

- ► Say we're in s₀
- $ho P^+(s_0) = \langle op_0^+ \rangle \circ P^+$, and (from prev arg) $|P^+(s_0)| \leq |P^+(s)|$
- ▶ op₀ is applicable now, leading to s₁
- ▶ $P^+(s_1) := P^+$ (remove op_0 from $P^+(s_0)$); thus $h^+(s_1) < h^+(s)!!$

▶ What does any of this have to do with causal graphs???

- What does any of this have to do with causal graphs???
- x_0 is CG leaf y_0 moving y_0 does not affect relaxed plan, thus applying y_0 in y_0 decreases y_0

- What does any of this have to do with causal graphs???
- x_0 is CG leaf y_0 moving y_0 does not affect relaxed plan, thus applying y_0 in y_0 decreases y_0
- Moving x_0 involves **only CG predecessors**; if those have invertible transitions & no cyclic dependencies \implies can construct path to s_0 with non-increasing h^+

Is this useful for anything?

Is this useful for anything?

- Domain analysis!
- ► TorchLight
- Long-term goal: "automatic Hoffmann"

Is this useful for anything?

- Domain analysis!
- ► TorchLight
- Long-term goal: "automatic Hoffmann"

- Guaranteed global analysis
- Approximate local analysis
- Diagnosis
 - ⇒ TorchLight demo today 17:30 20:00

Outline

- ▶ What happened?
- ightharpoonup On causal graphs and h^+
- Guaranteed global analysis
- Approximate local analysis
- Diagnosis
- Conclusion

15/23

Guaranteed global analysis

- ▶ Prove absence of local minima & global bound on lookahead
- Criterion strictly more general than what we just saw
- Allows e.g. non-unary operators, provided any side-effects are "harmless"
- Recognizes Logistics, Miconic-STRIPS, Movie, SimpleTSP
- ▶ Does not recognize anything else just yet ... $\left[\frac{4}{12}\right]$ domains

Outline

- ▶ What happened?
- \triangleright On causal graphs and h^+
- ► Guaranteed global analysis
- Approximate local analysis
- Diagnosis
- Conclusion

Approximate local analysis

- ► Local: Is state s not a local minimum?
- ▶ Analyze relaxed plan $P^+(s)$
- ▶ Answer "yes" guaranteed correct if $P^+(s)$ is optimal
- ► Theoretically, given optimal $P^+(s)$ as input, recognizes Ferry, Gripper, Elevators, Transport $[+ \text{ global} = \frac{8}{12} \text{ domains}]$
- ► Randomly sample states; fraction of "yes": success rate

Approximate local analysis

- ► Local: Is state s not a local minimum?
- ▶ Analyze relaxed plan $P^+(s)$
- ▶ Answer "yes" guaranteed correct if $P^+(s)$ is optimal
- ► Theoretically, given optimal $P^+(s)$ as input, recognizes Ferry, Gripper, Elevators, Transport $[+ \text{ global} = \frac{8}{12} \text{ domains}]$
- ► Randomly sample states; fraction of "yes": success rate
- Disclaimer:
 - Success rates can also be obtained by trivial search probing
 - Strong theoretical differences; some differences in benchmarks

Zenotravel Satellite Rovers **PSR** Pipesworld-Tank

Pipesworld-NoTank

Mystery Mprime Freecell

Driverlog Depots

Blocksworld-Arm

Airport

Tyreworld Transport Simple-Tsp Movie

Miconic-STRIPS

Logistics Hanoi

Gripper Grid

Ferry

Elevators Blocksworld-NoArm

Hanoi [0] Airport [0]

Blocksworld-Arm [30]

Mystery [39]

Pipesworld-Tank [40]

Mprime [49]

PSR [50] Freecell [56]

Blocksworld-NoArm [57]

Pipesworld–NoTank [76] Grid [80]

Depots [81] Zenotravel [95]

Tyreworld [100] Transport [100]

Simple-Tsp [100] Satellite [100] Rovers [100]

Movie [100] Miconic-STRIPS [100]

Logistics [100]

Gripper [100] Ferry [100]

Elevators [100] Driverlog [100] Success rate: average per-domain from single sample state per-instance

Zenotravel Satellite Rovers **PSR** Pipesworld-Tank

Pipesworld-NoTank Mystery

Mprime Freecell Driverlog Depots

Blocksworld-Arm Airport

Tyreworld Transport Simple-Tsp Movie

Miconic-STRIPS Logistics

Hanoi Gripper Grid

Ferry Elevators

Blocksworld-NoArm

Hanoi [0]

Airport [0] Blocksworld-Arm [30]

Mystery [39]

Pipesworld-Tank [40]

Mprime [49] PSR [50]

Freecell [56]

Blocksworld-NoArm [57]

Pipesworld–NoTank [76] Grid [80]

Depots [81]

Zenotravel [95] Tyreworld [100]

Transport [100] Simple-Tsp [100] Satellite [100] Rovers [100] Movie [100]

Miconic-STRIPS [100] Logistics [100] Gripper [100] Ferry [100]

Elevators [100] Driverlog [100]

- Not all domains are "fully recognized" ...
- ... mostly because Hoffmann is too optimistic

Zenotravel Satellite Rovers **PSR**

Pipesworld-Tank

Pipesworld-NoTank

Mystery Mprime

Freecell

Driverlog

Depots Blocksworld-Arm Airport

Tyreworld Transport Simple-Tsp Movie

Miconic-STRIPS

Logistics Hanoi

Gripper Grid

Ferry Elevators

Blocksworld-NoArm

Hanoi [0] Airport [0]

Blocksworld-Arm [30]

Mystery [39]

Pipesworld-Tank [40]

Mprime [49] PSR [50]

Freecell [56]

Blocksworld-NoArm [57]

Pipesworld–NoTank [76] Grid [80]

Depots [81]

Zenotravel [95]

Tyreworld [100] Transport [100] Simple-Tsp [100] Satellite [100]

Rovers [100] Movie [100]

Miconic-STRIPS [100] Logistics [100]

Gripper [100] Ferry [100]

Elevators [100] Driverlog [100]

- Some new domains are "fully recognized" ...
- ... mostly because Hoffmann is too pessimistic

Zenotravel Satellite Rovers **PSR**

Pipesworld-Tank Pipesworld-NoTank

Mystery

Mprime Freecell

Driverlog Depots

Blocksworld-Arm Airport

Tyreworld Transport Simple-Tsp Movie

Miconic-STRIPS

Logistics Hanoi

Gripper Grid

Ferry Elevators

Blocksworld-NoArm

Hanoi [0] Airport [0]

Blocksworld-Arm [30]

Mystery [39]

Pipesworld-Tank [40]

Mprime [49] PSR [50] Freecell [56]

Blocksworld-NoArm [57]

Pipesworld–NoTank [76] Grid [80]

Depots [81]

Zenotravel [95]

Tyreworld [100] Transport [100] Simple-Tsp [100]

Satellite [100] Rovers [100] Movie [100]

Miconic-STRIPS [100]

Logistics [100] Gripper [100] Ferry [100]

Elevators [100] Driverlog [100] Success rates are more than a "yes/no" answer!

Outline

- ▶ What happened?
- \triangleright On causal graphs and h^+
- ► Guaranteed global analysis
- Approximate local analysis
- Diagnosis
- Conclusion

Diagnosis

▶ Which domain aspects cause local minima?

Diagnosis

- ▶ Which domain aspects cause local minima?
- ▶ Which unsatisfied conditions caused the analysis to fail?

Diagnosis

- Which domain aspects cause local minima?
- Which unsatisfied conditions caused the analysis to fail?
- ▶ Operator-name/predicate pairs (op, P) where op effect on P prevented use as successful op₀ in approximate local analysis
- ► Zenotravel: "fly, fuel-level"
- ► Mystery/Mprime: "feast,locale"
- ► Satellite: "switch-on, calibrated"
- ► Rovers: "take-image,calibrated"
- ▶ This is merely a first-shot technique!

Outline

- ▶ What happened?
- \triangleright On causal graphs and h^+
- ► Guaranteed global analysis
- Approximate local analysis
- Diagnosis
- Conclusion

Conclusion

Conclusion

Improving TorchLight:

- ▶ Strengthen global analysis with complementary techniques
- ▶ Derive "good case" characterizations from local analysis?

Using TorchLight:

- ► Relaxed plan analysis ⇒ macro actions
- ▶ Performance prediction (even online during search)
- ► Abstract by removing (some) harmful effects (diagnosis!)
- Modeling support for planning end-users (diagnosis!)

Last Slide

Thanks. Questions?

p.s. There is an error in these slides. Where?