The TorchLight Tool: Analyzing Search Topology Without Running Any Search JÖRG HOFFMANN INRIA, Nancy, FRANCE #### ABSTRACT The ignoring delete lists relaxation is of paramount importance for both satisficing and optimal planning. In earlier work [Hoffmann, JAIR'05], it was observed that the optimal relaxation heuristic h^+ has amazing qualities in many classical planning benchmarks, in particular pertaining to the complete absence of local minima. The proofs of this are hand-made, raising the question whether such proofs can be lead automatically by domain analysis techniques. The TorchLight tool answers this question in the affirmative TorchLight is based on a connection between causal graph structure and h^+ topology. It distinguishes between <code>global</code> analysis and <code>local</code> analysis. Global analysis shows the absence of local minima once and for all, for the entire state space of a given planning task. Local analysis computes what we call the <code>success rate</code>, which estimates the percentage of individual sample states not on local minima and thus allows to make finer distinctions. Finally, <code>diagnosis</code> summarizes structural reasons for analysis failure, thus indicating domain aspects that may cause local minima. #### **TorchLight Results Overview** | local minima ed $\leq c$ | bench ed <= c | Blocks–Arm [30]
Depots [82]
Driverlog [100] | Pipes-Tank [40]
Pipes-NoTank [76]
PSR [50] | Rovers [100]
Opt–Tele [7] | Mystery [39]
Mprime [49]
Freecell [55]
Airport [0] | Woodwork [13]
Trucks [0]
TPP [80] | |--------------------------|---------------|--|--|------------------------------|---|---| | | | Hanoi [0]
Blocks-NoArm [57]
Transport [+,100] | Grid [80] | | | Storage [93]
Sokoban [13] | | | | Elevators [+,100]
Logistics [*,100]
Ferry [+,100]
Gripper [+,100] | Tyreworld [100] Satellite [100] Zenotravel [95] Miconic–STR [*,100] Movie [*,100] Simple–Tsp [*,100] | Din–Phil [24] | | Scanalyzer [30] Peg-Sol [0] Pathways [10] Parc-Printer [3] Openstacks [0] | | | | undirected | harmless | recognized | unrecognized | i | Taxonomy of Hoffmann [JAIR'05]. Green: no local minima under h^+ . "*": global analysis always succeeds. "+": local analysis always succeeds if run on optimal relaxed plans. Numbers: average success rate per domain, for local analysis (run on $h^{\rm FF}$'s relaxed plans) when sampling a sin- gle state per domain instance. #### **Local Analysis (simplified)** **Optimal rplan dependency graph** oDG^+ : Assume (X, s_I, s_G, O) , $s \in S$, optimal relaxed plan $P^+(s)$, $x_0 \in X$, $o_0 \in P^+(s)$ taking $t_0 = (s(x_0), c)$; denote $P^+_{< 0}(s) := P^+(s)$ up to o_0 . - Unique leaf x_0 ; arc (x,x') iff an operator in $P^+_{\leq 0}(s)$ takes a transition on x' preconditioned on x - Non-leaf x: $oDTG_x^+$ is DTG sub-graph traversed by $P_{<0}^+(s)$ #### Successful oDG+: - oDG⁺ is acyclic - If delete p of t_0 is relevant for "rest of $P^+(s)$ ", then $P^+(s)$ can be rearranged so that all such p are re-achieved up front - [boarding passenger in Miconic deletes "not-boarded()"; picking ball in Gripper deletes "free-gripper()", re-achieved by dropping ball] - \bullet Non-leaf x: oDTG $_x^+$ transitions invertible and no harmful side effects [moving vehicle along road-map] **Theorem.** \exists *successful* $oDG^+ \implies s$ *is not a local minimum under* h^+ . **Proof.** By moving only non-leaf vars x within $oDTG_x^+$, we can reach a state s_0 where t_0 can be applied. h^+ remains constant on the path, by virtue of inverting the executed operators in $P^+(s)$. After applying t_0 , h^+ decreases because we can remove o_0 from the relaxed plan. #### Diagnosis If o_0 fails due to t_0 delete of p, collect (PDDL action name O, predicate name P) where o_0 instantiates O and p instantiates P; weight by frequency. #### **Global Analysis (simplified)** Global dependency graph gDG: Assume (X, s_I, s_G, O) , $s \in S$, goal variable $x_0 \in X$, o_0 taking $t_0 = (s(x_0), c)$. $\bullet \ \ Unique \ leaf \ x_0; (x,x') \ precondition-effect \ arcs \ in \ causal \ graph$ #### Successful gDG: - gDG is acyclic - ullet Side-effect deletes of t_0 do not occur anywhere except (perhaps) in o_0 [boarding passenger in Miconic deletes "not-boarded()"] - \bullet Non-leaf x: all DTG_x transitions invertible and no harmful side effects [moving vehicle along road-map] #### **Theorem.** $\forall gDG$ successful \implies no local minima under h^+ . **Proof.** In every non-goal s, every optimal relaxed plan $P^+(s)$ will move one goal var x_0 "for its own sake only". The oDG^+ for x_0 and its first move o_0 is contained in the respective gDG. Thus oDG^+ is acyclic, and all $oDTG_x^+$ transitions invertible/no harmful side effects. Side-effect deletes of t_0 irrelevant by prerequisite; "own" delete $s(x_0)$ irrelevant because x_0 moves for its own sake only. Altogether, oDG^+ is successful. # TorchLight #### Illustrative Example: No Local Minima Three variables x_0,x_1,x_2 . Top left: causal graph. All transitions invertible and no side effects. Green: where we are. Red: what we need to do. #### **TorchLight Analysis of NoLM Example** #### Details: see TorchLight verbose demo. #### Local analysis: Relaxed plan: $\langle x_112, x_123, x_13c, x_212, x_223, x_23c, o_0 \rangle$ Leaf-var x_1 with x_112 doesn't work because delete $x_1=d_{11}$ is relevant (goal). Same for x_2,x_212 . Other moves of x_1,x_2 : start value $\neq s$. Leaf-var x_0 with o_0 : oDG^+ = causal graph is acyclic; delete $x_0=d_{01}$ is irrelevant; $oDTG_x^+$ transitions for x_1,x_2 invertible and no side effects. ### $\implies oDG^+$ for leaf-var x_0 with o_0 is successful! Global analysis: Any transition of x_1, x_2 : no causal graph predecessors hence no non-leaf vars (and acyclic). No side effects at all. Any transition of x_0 : causal graph predecessors x_1,x_2 with invertible/no side effects transitions; acyclic. No side effects at all. \implies all gDG successful! #### Illustrative Example: Local Minima As above, but fourth variable x_3 that is already in its goal d_{31} ; side effect of t_0 setting x_3 to d_{39} far away from its goal. #### **TorchLight Analysis of LM Example** #### Details: see TorchLight verbose demo. #### Local analysis: Relaxed plan: $\langle x_1 12, x_1 23, x_1 3c, x_2 12, x_2 23, x_2 3c, o_0 \rangle$ Leaf-var x_0 with o_0 : as before, $oDG^+=$ causal graph is acyclic, $oDTG_x^+$ transitions for x_1,x_2 invertible and no side effects, delete $x_0=d_{01}$ is irrelevant. However, delete $x_3=d_{31}$ is relevant and not re-achieved inside relaxed plan. \Rightarrow this oDG^+ not successful! (others neither, as before) #### Diagnosis: o_0 failed due to t_0 delete of $x_3 = d_{31}$. #### Global analysis: Transition t_0 of x_0 : as before, causal graph predecessors x_1,x_2 with invertible/no side effects transitions, acyclic. However, side effect on x_3 ! \implies this gDG is not successful! # Improving TorchLight: Strengthening Global Analysis? #### Two major weaknesses of global analysis vs. local analysis: - (1) "(x,x') precondition-effect arc in causal graph" vs. "(x,x') iff an operator in $P^+_{\geq 0}(s)$ takes a transition on x' preconditioned on x'' [("carry-ball-b", "free-gripper") in causal graph due to dropping ball b; ("free-gripper", "carry-ball-b") in causal graph due to picking up the same ball b] - (2) "Side-effect deletes of t_0 irrelevant" vs. " $P^+(s)$ can be re-arranged so that all relevant deletes of t_0 re-achieved up front" [picking ball in Gripper deletes "free-gripper()", re-achieved by dropping ball] Hence local analysis, but not global analysis, succeeds in Elevators, Ferry, Gripper, Transport. Addressing (1): sufficient conditions for "operator o never precedes operator o_0 in an optimal relaxed plan". Adapt [Hoffmann&Nebel, ECP'01]? Addressing (2): sufficient conditions for "if o is in optimal relaxed plan then so is o". Variant of landmarks analysis? # Improving TorchLight: Characterizing "Good Cases"? Extrapolate "reasons" for local analysis success? (Thanks to anonymous reviewer for suggesting.) #### **Using TorchLight: Targeted Macro-Actions?** Local analysis succeeds \implies path to state with strictly smaller h^+ value! NoLM Example: move x_1 to c_1 , move x_2 to c_2 , apply t_0 . Similar to relaxed-plan-execution macros [Vidal, ICAPS'04]? Stronger if (and only if?) to-and-fro moves of non-leaf vars are needed. (Macro can be exponentially long in depth of $oDG^+\ldots$) #### **Using TorchLight: Performance Prediction?** #### Highly informative search space features! ("Enforced Hill-Climbing succeeds iff success rate $\geq T$ " ⇒ 71.9% correct, vs. baseline 60.7%) Use for automatic planner configuration! Even online! Analyze $P^+(s)$, search more/less greedily if "yes"/"no" #### **Using TorchLight: Targeted Abstraction?** Global analysis succeeds ⇒ problem tractable by chaining "macros"! Remove diagnosed "harmful" effects until global analysis succeeds? [transportation domains: remove fuel usage] Option: stop anytime; run planner inside heuristic! [Grid: allow to carry several keys at same time] #### **Using TorchLight: PDDL Modeling Guidance?** This whole work happened because "planning end-users" (Carlos & Luciana) complained about not having such guidance! Diagnosis points out "critical" aspects of model ⇒ user may omit these aspects! $\implies \text{versioning for trade-off precision vs. costs!}$ [(a) end-users might not know that fuel consumption hurts, and (b) removing it might still yield useable plans \dots] #### References Hoffmann, JAIR'05. Where 'ignoring delete lists' works: Local search topology in planning benchmarks. *JAIR* 24:685–758. Hoffmann&Nebel, ECP'01. RIFO revisited: Detecting relaxed irrelevance. 6th European Conference on Planning, 325–336. Vidal, ICAPS'04. A lookahead strategy for heuristic search planning. 14th International Conference on Automated Planning and Scheduling, 150–160.