
Fast Probabilistic Planning Through Weighted Model Counting

Carmel Domshlak
Technion - Israel Institute of Technology

Haifa, Israel

Jörg Hoffmann
Max Planck Institute for Computer Science

Saarbrücken, Germany

Abstract

We present a new algorithm for probabilistic planning with no
observability. Our algorithm, called Probabilistic-FF, extends
the heuristic forward-search machinery of Conformant-FF to
problems with probabilistic uncertainty about both the initial
state and action effects. Specifically, Probabilistic-FF com-
bines Conformant-FF’s techniques with a powerful machin-
ery for weighted model counting in (weighted) CNFs, serv-
ing to elegantly define both the search space and the heuristic
function. Our evaluation of Probabilistic-FF on several prob-
abilistic domains shows an unprecedented, several orders of
magnitude improvement over previous results in this area.

Introduction
In this paper we address the problem of probabilistic plan-
ning with no observability (Kushmerick et al. 1995), also
known in the AI planning community as conditional (Ma-
jercik & Littman 2003) or conformant (Hyafil & Bacchus
2004) probabilistic planning. In such problems we are given
an initial belief state in the form of a probability distribu-
tion over the world states W , a set of actions having (possi-
bly) probabilistic effects, and a set of alternative goal states
WG ⊆ W . A solution to such a problem is a single sequence
of actions that transforms the system into one of the goal
states with probability exceeding a given threshold θ. The
basic assumption of the problem is that the system cannot
be observed at the time of plan execution. Such a setting is
useful in controlling systems with uncertain initial state and
non-deterministic actions, if sensing is expensive or unreli-
able. Non-probabilistic conformant planning may fail due
to non-existence of a plan that achieves the goals with 100%
certainty. Even if there is such a plan, that plan does not
necessarily contain information about what actions are most
useful to achieve (only) the requested threshold θ.

The two most prominent steps made in the direction of
conformant probabilistic planning are the probabilistic ex-
tensions of partial-order planning (Kushmerick et al. 1995),
and to fixed-length planning with problem reformulation
into either probabilistic SAT (Majercik & Littman 1998) or
probabilistic CSP (Hyafil & Bacchus 2004). The state-of-
the-art performance of probabilistic planners has been ad-

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

vancing much more slowly than that of deterministic plan-
ners, scaling from 5-10 step plans for problems with ≈20
world states to 15-20 step plans for problems with ≈100
world states. Since probabilistic planning is inherently
harder than its deterministic counterpart (Littman, Gold-
smith, & Mundhenk 1998), such a difference in evolution
rates is not surprising. Yet, here we show that dramatic im-
provements in probabilistic planning can be obtained.

We introduce Probabilistic-FF, a new probabilistic plan-
ner based on heuristic forward search in the space of im-
plicitly represented probabilistic belief states. The plan-
ner is based on combining the idea of lazy CNF-based be-
lief state representation introduced in the (non-probabilistic)
conformant planner Conformant-FF (Brafman & Hoffmann
2004) with recent techniques for probabilistic reasoning us-
ing weighted model counting (WMC) in propositional CNFs
(Sang, Beame, & Kautz 2005). This synergetic combination
allows us to elegantly extend both Conformant-FF’s search
space and heuristic function to the probabilistic setting.

The algorithms we present cover probabilistic initial be-
lief states given as Bayes networks, deterministic and proba-
bilistic actions, conditional effects, and standard action pre-
conditions. By the time of submission of this paper, our
ongoing implementation supports probabilistic belief states,
as well as deterministic actions with preconditions and con-
ditional effects. Implementing the presented techniques for
probabilistic effects will be our next step. So far, we can
offer stunning results in domains with complex probabilis-
tic initial states: in contrast to the SAT and CSP based ap-
proaches mentioned above, Probabilistic-FF can find 100-
step plans for instances with billions of world states. This
success is based on consequent exploitation of problem
structure, through our belief state representation and heuris-
tic function – both of which are heavily based on the syn-
ergy between WMC and Conformant-FF’s CNF-based tech-
niques. In fact, while without probabilities one could imag-
ine to successfully replace the CNFs with BDDs, with prob-
abilities, this seems hopeless.

We detail our planning model, then in turn describe the
belief state representation by Bayes networks, the encod-
ing of Bayes networks as weighted CNFs, and the heuristic
function; we give our empirical results, and conclude.

Problem Modeling
The probabilistic planning framework we consider adds
probabilistic uncertainty to a subset of the classical ADL
language, namely (sequential) STRIPS with conditional ef-
fects. Such STRIPS planning tasks are described over a
set of propositions X as triples (A, I, G), corresponding
to the action set, initial world state, and goals. I and
G are sets of propositions, where I describes a concrete
initial state wI , while G describes the set of goal states
w ⊇ G. Actions a are pairs (pre(a), E(a)) of the precon-
dition and the (conditional) effects. A conditional effect e is
a triple (con(e), add(e), del(e)) of (possibly empty) propo-
sition sets, corresponding to the effect’s condition, add, and
delete lists, respectively. The precondition pre(a) is also
a proposition set, and an action a is applicable in a world
state w if w ⊇ pre(a). If a is not applicable in w, then the
result of applying a to w is undefined. If a is applicable in
w, then all conditional effects e ∈ E(a) with w ⊇ con(e)
occur. Occurrence of a conditional effect e in w results in
the world state w − del(e) + add(e).

Our probabilistic planning setting extends the above with
(i) probabilistic uncertainty about the initial state, and
(ii) an additional type of action having probabilistic ef-
fects.1 In general, probabilistic planning tasks are quadru-
ples (A,PI , G, θ), corresponding to the action set, initial
belief state, goals, and goal satisfaction probability. As
before, G is a set of propositions. The initial state is no
longer assumed to be known precisely. Instead, we are given
a probability distribution over the world states, PI , where
PI(w) describes the likelihood of w being the initial world
state. The action set A consists of two different types of ac-
tions. Ad ⊆ A is a set of deterministic actions that have
precisely the same structure and semantics as the actions
in STRIPS with conditional effects. Ap ⊆ A is a set of
probabilistic actions. Similarly to Ad, actions a ∈ Ap are
pairs (pre(a), E(a)), but the effect set E(a) for such a has
different structure and semantics. Each probabilistic effect
e ∈ E(a) is a pair (con(e),Λ(e)) of a propositional condi-
tion and a set of probabilistic outcomes. Each probabilistic
outcome ε ∈ Λ(e) is a triplet (p(ε), add(ε), del(ε)), where
add and delete lists are as before, and p(ε) is the probabil-
ity that outcome ε occurs as a result of effect e. Naturally,
we require that probabilistic effects define probability dis-
tributions over their outcomes, that is,

∑
ε∈Λ(e) p(ε) = 1.

Without loss of generality, we assume that the conditions
of probabilistic effects E(a) are mutually exclusive and ex-
haustive (Kushmerick, Hanks, & Weld 1995). Uncondi-
tional probabilistic actions are modeled as having a single
probabilistic effect e with con(e) = ∅. As before, if a is
not applicable in w, then the result of applying a to w is
undefined. If a is applicable in w, then there exists exactly
one effect e ∈ E(a) such that con(e) ⊆ w, and for each
ε ∈ Λ(e), applying a to w results in w + add(ε) − del(ε)
with probability p(ε).

Considering the initial belief state, practical considera-

1Our formalism covers the features of the previously proposed
languages for conformant probabilistic planning (Kushmerick et
al. 1995, Majercik & Littman 1998, Hyafil & Bacchus 2004).

tions force us to limit our attention only to compactly rep-
resentable probability distributions PI . While there are
numerous alternatives for compact representation of struc-
tured probability distributions, Bayes networks (BNs) (Pearl
1988) to date is by far the most popular such representa-
tion model.2 As excellent introductions to BNs abound (e.g.,
see (Jensen 1996)), it suffices to briefly define our notation.
A BN N = (G,P) represents a probability distribution as
a directed acyclic graph G, where its set of nodes V stands
for random variables (assumed discrete in this paper), and
P , a set of tables of conditional probabilities (CPTs) - one
table TX for each node X ∈ V . For each possible value
x ∈ Dom(X) (where Dom(X) denotes the domain of X),
the table TX lists the probability of the event X = x given
each possible value assignment to all of its immediate ances-
tors (parents) Pa(X) in G. Thus, the table size is exponen-
tial in the in-degree of X . Usually, it is assumed either that
this in-degree is small (Pearl 1988) or that the probabilis-
tic dependence of X on Pa(X) induces a significant local
structure allowing a compact representation of TX (Boutilier
et al. 1996).

We assume that the initial belief state PI is described by
a BN NI over our set of propositions X . In Probabilistic-FF
we allowNI to be described over the true multi-valued vari-
ables underlying our problem. This significantly simplifies
the process of specifying NI since the STRIPS propositions
X do not correspond to the true random variables underlying
problem specification.3 Specifically, let

⋃k
i=1 Xi be a parti-

tion of X such that each proposition set Xi uniquely corre-
sponds to a multi-valued variable underlying our problem.
That is, for every world state w and every Xi, if |Xi| > 1,
then there is exactly one proposition q ∈ Xi that holds in
w. The variables of the BN NI describing our initial belief
state PI are V = {X1, . . . , Xk}, where Dom(Xi) = Xi

if |Xi| > 1, and Dom(Xi) = {q,¬q} if X = {q}. It is
not hard to see that the semantics of the actions a ∈ A can
be specified in terms of V in a straightforward manner. If
|Xi| > 1, then no action a can add a proposition q ∈ Xi

without deleting some other proposition q′ ∈ Xi (and vice
versa). Thus, we can consider a as setting Xi = q. If
|Xi| = 1, then adding and deleting q ∈ Xi has the standard
semantics of setting Xi = q and Xi = ¬q, respectively.

Finally, since our actions transform (probabilistic) belief
states to belief states, achieving G with certainty is typically
unrealistic. Hence, θ specifies the required lower bound on
probability of achieving G. A sequence of actions a is called
a plan if we have Pa(G) ≥ θ for the belief state Pa, obtained
by applying a to the initial belief state PI .

Example 1 Say we have a robot and a block that physi-
cally can be at one of two locations. This information is
captured by the propositions rL1, rL2 for the robot, and

2While BNs are our choice here, our framework can support
other models as well, e.g. stochastic decision trees.

3In short, specifying NI directly over X would require identi-
fying the multi-valued variables anyway, followed by connecting
all the propositions corresponding to a multi-valued variable by a
complete DAG, and then normalizing the CPTs of these proposi-
tions in a certain manner.

rL1 rL2

0.9 0.1
?>=<89:;R // ?>=<89:;B

bL1 bL2

rL1 0.7 0.3

rL2 0.2 0.8

Figure 1: Bayes network NI for Example 1.

bL1, bL2 for the block, respectively. The robot can either
move from one location to another, or do it while carry-
ing the block. If the robot moves without the block, then
its move is guaranteed to succeed. This provides us with a
pair of (symmetrically defined) deterministic actions Ad =
{move-right, move-left}. The action move-right has an
empty precondition, and a single conditional effect e with
con(e) = {rL1}, add(e) = {rL2}, and del(e) = {rL1}.
If the robot tries to move while carrying the block, then this
move succeeds with probability 0.7, while with probability
0.2 the robot ends up moving without the block, and with
probability 0.1 this move of the robot fails completely. This
provides us with a pair of (again, symmetrically defined)
probabilistic actions Ap = {move-b-right, move-b-left}.
The action move-b-right has an empty precondition, and
two conditional effects specified as follows:

E(a) con(e) Λ(e) p(ε) add(ε) del(ε)

ε1 0.7 {rL2, bL2} {rL1, bL1}
e rL1 ∧ bL1 ε2 0.2 {rL2} {rL1}

ε3 0.1 ∅ ∅
e′ ¬rL1 ∨ ¬bL1 ε′1 1.0 ∅ ∅

Now, say the robot is known to be initially at one of the
two possible locations with probability P (rL1) = 0.9 and
P (rL2) = 0.1. Suppose there is a correlation in our belief
about the initial locations of the robot and the block. We
believe that, if the robot is at rL1, then P (bL1) = 0.7 (and
P (bL2) = 0.3), while if the robot is at rL2, then P (bL1) =
0.2 (and P (bL2) = 0.8). The initial belief state BN is de-
fined over two variables R (“robot”) and B (“block”) with
Dom(R) = {rL1, rL2} and Dom(B) = {bL1, bL2}, re-
spectively, and it is depicted in Figure 1.

Belief States as Bayes Networks
Probabilistic-FF constitutes a forward search in belief space.
The search states are belief states (that is, probability dis-
tributions over the world states w), and the search is re-
stricted to belief states reachable from the initial belief state
PI through some sequences of actions a. A key decision one
should make is the actual representation of the belief states.
Let PI be our initial belief state captured by NI , and let Pa

be a belief state resulting from applying to PI a sequence
of actions a. One of the well-known problems in the area
of decision-theoretic planning is that the description of Pa

in terms of only X (that is, V) is getting less and less struc-
tured as the number of actions in a increases. To overcome
this limitation, we represent belief states Pa as a BNNa that
explicitly captures sequential application of a starting from
PI . Below we formally specify the structure of such a BN
Na, assuming that all the actions a are applicable in the cor-
responding belief states of their application (and later show-
ing that Probabilistic-FF makes sure this is indeed the case.)
Figure 2 illustrates this construction of Na on our running
example with a = 〈move-b-right, move-left〉.

rL1 rL2
0.9 0.1

rL1 rL2
ε1 ∨ ε2 0 1

ε3 ∨ ε′1
rL1 1 0
rL2 0 1

rL1 rL2
rL1 1 0
rL2 1 0

GFED@ABCR(0)

��

//

&&NNNNNNN
GFED@ABCR(1) // GFED@ABCR(2)

Y(1)

66nnnnnnnn

((PPPPPPPP
ε1 ε2 ε3 ε′1

rL1 ∧ bL1 0.7 0.2 0.1 0
othrw 0 0 0 1

GFED@ABCB(0) //

88ppppppp GFED@ABCB(1) // GFED@ABCB(2)

bL1 bL2
rL1 0.7 0.3
rL2 0.2 0.8

bL1 bL2
ε1 0 1

¬ε1
bL1 1 0
bL2 0 1

bL1 bL2
bL1 1 0
bL2 0 1

Figure 2: Bayes network Na for our running example.

Let a = 〈a1, . . . , am〉 be a sequence of actions, numbered
according to their appearance on a. For 0 ≤ t ≤ m, let
V(t) be a replica of our state variables V , with X(t) ∈ V(t)

corresponding to X ∈ V . The variable set of Na is the
union of V(0), . . . ,V(m), plus some additional variables that
we introduce for the probabilistic actions in a.

First, for each X(0) ∈ V(0), we set the parents Pa(X(0))
and conditional probability tables TX(0) to simply copy these
of X in NI . Now, suppose that at is a deterministic action
a ∈ Ad, and let EX(a) ⊆ E(a) be the conditional effects
of a that add and/or delete propositions associated with the
domain of a variable X ∈ V . If EX(a) = ∅, then we set
Pa(X(t)) = {X(t−1)}, and

TX(t)(X(t) = x | X(t−1) = x′) =

(
1, x = x′,

0, otherwise
(1)

Otherwise, we set

Pa(X(t)) = {X(t−1)}
[

e∈EX (a)

˘
X ′

(t−1) | con(e) ∩Dom(X) 6= ∅
¯

,

(2)
and specify TX(t) as follows. Let xe ∈ Dom(X) be

the value that effect e ∈ EX(a) provides to X . For each
π ∈ Dom(Pa(X(t))), if there exists e ∈ EX(a) such that
con(e) ⊆ π, then we set

TX(t)(X(t) = x | π) =

(
1, x = xe,

0, otherwise
(3)

Otherwise, we set

TX(t)(X(t) = x | π) =

(
1, x = π[X(t−1)],

0, otherwise
(4)

It is not hard to verify that Eqs. 3-4 are consistent, and,
together with Eq. 1, capture the semantics of the conditional
deterministic actions.

Alternatively, suppose that at is a probabilistic action a ∈
Ap. For each such action we introduce a discrete variable
Y(t) with Dom(Y(t)) =

⋃
e∈E(a) Λ(e),

Pa(Y(t)) =
[

e∈E(a)

˘
X(i−1) | con(e) ∩Dom(X) 6= ∅

¯
, (5)

and, for each π ∈ Dom(Pa(Y(t))), we set

TY (t)(Y(i) = ε | π) =

(
p(ε), con (e(ε)) ⊆ π

0, otherwise
, (6)

where e(ε) denotes the effect e of a such that ε ∈ Λ(e).
We refer to the set of all such variables created for a as
Y . Now, similarly to the case of deterministic actions, let
EX(a) ⊆ E(a) be the (now probabilistic) effects of a
that affect a variable X ∈ V . The case of EX(a) = ∅
is similar to this for deterministic actions, that is, we set
Pa(X(t)) = {X(t−1)}, and set TX(t) according to Eq. 1.
Alternatively, if EX(a) 6= ∅, let xε ∈ Dom(X) be the value
provided to X by ε, e(ε) ∈ EX(a). Recall that the out-
comes of effects E(a) are all mutually exclusive. Hence,
we set Pa(X(t)) = {X(t−1), Y(t−1)}, and

TX(i)(X(i) = x |X(i−1) = x′, Y(i−1) = ε) =8><>:
1, e(ε) ∈ EX(a) ∧ x = xε,

1, e(ε) 6∈ EX(a) ∧ x = x′,

0, otherwise

(7)

Here as well, it is not hard to verify that Eqs. 6-7 capture
the precise semantics of our probabilistic actions and frame
axioms. This accomplishes our construction of Na over the
variables Va = Y

⋃m
t=0 V(t).

Theorem 1 Let (A,NI , G, θ) be a probabilistic planning
task, and a be an m-step sequence of actions applicable in
PI . Let P be the probability distribution induced by Na on
its variables Va.

1. The belief state Pa corresponds to the marginal distribu-
tion of P on V(m), that is, Pa = P (V(m)).

2. If G(m) is the (possibly partial) assignment provided by
G to V(m), then the probability that a achieves G is equal
to P (G(m)), that is, Pa(G) = P (G(m)).

At this point, it is worth bringing attention to the fact that
all the variables in V(1), . . . ,V(m) are completely determin-
istic. Moreover, the CPTs of these variables are all com-
pactly representable (not exponential in the number of par-
ents) due to the local structure induced by a large amount
of context-specific independence (Boutilier et al. 1996).
Hence, the description complexity of Na is linear in the size
of the input, and in the number of actions in a.

Lemma 1 Let (A,NI , G, θ) be a probabilistic planning
task, and a be a sequence of actions from A. Then, we have
|Na| = O (|a| · (|NI |+ α)), where α is the largest descrip-
tion size of an action in A.

Belief States as Weighted CNFs
Given our representation of belief states as BNs, next we
should select a mechanism for reasoning about these BNs.
Computing the probability of a query in a BN is well
known to be #P-complete (Roth 1996). While numerous ex-
act algorithms for inference with BNs have been proposed
in the literature (e.g., see (Darwiche 2000; Dechter 1999;
Zhang & Poole 1994)), all these algorithms do not scale well
on large networks exhibiting high density and tree-width.
Recent advances in the area, however, show that practical
exact inference in BNs is far from being hopeless. The main
observation that guides these advances is that real-world do-
mains typically exhibit a significant degree of deterministic

dependencies and context-specific independencies.Targeting
this property of BNs already resulted in developing power-
ful inference techniques (Chavira & Darwiche 2005; Sang,
Beame, & Kautz 2005). The general principle of these tech-
niques is to (i) compile a BN N into a propositional logic
formula φ(N), (ii) associate some literals of φ(N) with
numerical weights derived from the CPTs of N , and (iii)
perform an efficient weighted model counting on φ(N) by
reusing (and adapting) certain techniques that appear pow-
erful in enhancing backtracking DPLL-style search for SAT.

We have already shown that the BNs representing our be-
lief states exhibit a large amount of both deterministic nodes
and context-specific independence. Together with the fact
that queries of our interest correspond to computing prob-
ability of “evidence” G(m) in Na, this makes the model-
counting techniques especially attractive for our purposes.
Taking this route, in Probabilistic-FF we compile our BNs
to weighted CNFs following the encoding scheme proposed
in (Sang, Beame, & Kautz 2005), and answer probabilis-
tic queries using Cachet (Sang et al. 2004), one of the
most powerful (if not the most powerful) system to date for
weighted model counting in CNFs.

For a detailed description of the weighted CNF encoding
we refer the reader to (Sang, Beame, & Kautz 2005). In
general, this encoding is based on two types of propositional
variables: state variables for the values of the BN variables,
and chance variables, encoding the entries of conditional
probability tables. For each variable X(t) ∈ V(t), we need
up to γ · (|Dom(X(0))| − 1) chance variables, where γ is
the number of rows in TX(t). Clauses involving both state
and chance variables encode the structure of the CPTs, while
clauses involving state variables only encode the “exactly
one” relationship between the state variables capturing the
value of a single BN variable.

Together with the weighted chance variables, the clauses
of the encoding provide the input for a weighted model
counting procedure. A simple recursive DPPL-style proce-
dure basic-WMC underlying Cachet (Sang et al. 2004) is
depicted in Figure 3. The weight of a (partial) variable as-
signment is the product of weights of the literals in that as-
signment. The weight of a formula φ is the sum of weights
of all complete satisfying assignments to the variables of φ,
and this is exactly the result of basic-WMC(φ). Likewise,
Theorem 3 in (Sang, Beame, & Kautz 2005) shows that if φ
is a weighted CNF encoding of a BN N , and P (Q|E) is a
general query with respect to N , then we have P (Q|E) =
basic-WMC(φ∧Q∧E)

basic-WMC(φ∧E) . Note that, in our special case of empty
evidence, P (Q|E) reduces to P (Q) = basic-WMC(φ∧Q),
that is, a single call to the basic-WMC procedure.

Lemma 2 Let (A,PI , G, θ) be a probabilistic planning task
with a BN NI describing PI , and a be an m-step sequence
of actions. The probability Pa(G) that a achieves G is:

Pa(G) = WMC (ϕ(a) ∧G(m)) . (8)

Besides the fact that weighted model counting is attrac-
tive for the kinds of BNs arising in our context, in what
follows we show that weighted CNF representation of be-
lief states goes extremely well with the ideas underlying

procedure basic-WMC(φ)

1 if φ = ∅ return 1
2 if φ has an empty clause return 0
3 select a variable v ∈ φ

4 if v is a chance variable
5 return basic-WMC(φ|v=1) · weight(v) +

6 basic-WMC(φ|v=0) · (1− weight(v))

7 else
8 return basic-WMC(φ|v=1) + basic-WMC(φ|v=0

Figure 3: Basic DPPL-style weighted model counting.

Conformant-FF (Brafman & Hoffmann 2004), a state-of-
the-art approach for (non-probabilistic) conformant plan-
ning. In what follows, we outline the Conformant-FF ap-
proach to belief space search, and then explain the exten-
sions made for Probabilistic-FF.

Conformant-FF does a forward search in a non-
probabilistic belief space in which each belief state corre-
sponds to a set of world states considered to be possible.
The main trick of Conformant-FF is the use of CNF for-
mulas for an implicit representation of belief states. Im-
plicit, in this context, means that formulas ϕ(a) encode the
semantics of executing action sequence a in the initial be-
lief state, with propositional variables corresponding to facts
with time-stamps. Any actual knowledge about the belief
states has to (and can) be inferred from these formulas; most
particularly, a fact p is known to be true in a belief state iff
ϕ(a) → p(m), where m is the time endpoint of the for-
mula. The only knowledge computed by Conformant-FF
about belief states are these known facts, as well as (sym-
metrically) the facts that are known to be false. This suffices
to do STRIPS-style planning, i.e., to determine applicable
actions and goal belief states. This computation of only a
partial knowledge constitutes a lazy kind of belief state rep-
resentation, in comparison to other approaches that use ex-
plicit enumeration (Bonet & Geffner 2000) or BDDs (Bertoli
et al. 2001) to fully represent belief states.

The basic idea underlying Probabilistic-FF is (i) to extend
Conformant-FF’s belief state formulas to model our BNs,
(ii) to use weighted model-counting to determine whether
the probability of the goals in a belief state is high enough,
and (iii) to adapt the heuristic function of Conformant-
FF to the probabilistic setting. Note the synergetic effect:
Probabilistic-FF can re-use all of Conformant-FF’s technol-
ogy to recognize facts that are true or false with probability
1. This fully serves to determine applicable actions, as well
as detect whether part of the goal is already known.

In more detail, given a probabilistic planning task
(A,PI , G, θ), a belief state Pa corresponding to some exe-
cutable m-step action sequence a, and a proposition q ∈ X ,
we say that q is known in Pa if Pa(q) = 1, negatively known
in Pa if Pa(q) = 0, and unknown in Pa, otherwise. We be-
gin by determining whether q is known, negatively known,
or unknown at time m. Re-using the Conformant-FF ma-
chinery, this classification requires up to two SAT tests of
ϕ(Na) ∧ ¬q(m) and ϕ(Na) ∧ q(m), respectively. The in-
formation provided by this classification is used threefold.
If a subgoal g is negatively known at time m, then we have
Pa(G) = 0. On the other extreme, if all the subgoals of G
are known at time m, then we have Pa(G) = 1. Finally, if
some subgoals of G are known and the rest are unknown at

time m, then we accomplish evaluating a by testing whether

Pa(G) = WMC (ϕ(Na) ∧G(m)) ≥ θ. (9)

Note also that having the sets of all (positively/negatively)
known propositions at all time steps up to m allows us signif-
icantly simplify the CNF formula ϕ(Na) ∧G(m) by insert-
ing into it the corresponding values of known propositions.

After evaluating the considered action sequence a, if we
get Pa(G) ≥ θ, then we are done. Otherwise, the forward
search continues, and the actions that are applicable in Pa

(and thus used to generate the successor belief states) are
those whose preconditions are all known in Pa.

Heuristic Function
Like the belief state representation, Conformant-FF’s
heuristic goal distance estimation process translates natu-
rally to the new context. For the estimation, Conformant-
FF relaxes the planning task by ignoring all delete lists, and
by ignoring all but one effect condition of each effect. Un-
der these simplifying assumptions, original FF’s machinery
(Hoffmann & Nebel 2001) can be extended with a DAG –
called “implication graph” – capturing the dependencies be-
tween unknown facts, as well as with a reasoning machinery
that uses this implication graph to infer when unknown facts
become known. The extended machinery is sound and com-
plete for relaxed tasks, and yields a heuristic function that
is highly informative across a range of challenging domains
(Brafman & Hoffmann 2004).

In the Probabilistic-FF context, we need to extend
Conformant-FF’s machinery with the abilities to determine
when the goal set is sufficiently likely (rather than known to
be true for sure). To achieve that, we must introduce into
relaxed planning some effective reasoning about the prob-
abilistic initial state and effects of probabilistic actions. It
turns out that such a reasoning can be obtained by a certain
natural weighted extension of the implication graph and the
reasoning done with it. In what follows, we explain the ex-
tended process in detail, starting with brief descriptions of
the machinery used in original FF, and in Conformant-FF.

The heuristic of FF is based on the notion of relaxed plan,
which is a plan that achieves the goals while assuming that
all delete lists of actions are empty. The heuristic value h(w)
that FF provides to a world state w encountered during the
search is the length of the relaxed plan to w. Formally, re-
laxed plans are computed as follows. Starting from w, FF
builds a relaxed planning graph as a sequence of alternating
proposition layers P (t) and action layers A(t), where P (0)
is the same as w, A(t) is the set of all actions whose precon-
ditions are contained in P (t), and P (t + 1) is obtained from
P (t) by including the add effects (with fulfilled conditions)
of the actions in A(t). The relaxed planning graph is con-
structed either until it reaches a propositional layer P (m)
that contains all the goals, or until the construction reaches
a fixpoint P (t) = P (t + 1) without reaching the goals. The
latter case corresponds to (all) situations in which a relaxed
plan does not exist, and because existence of a relaxed plan
is a necessary condition for existence of a real plan, the state
w is excluded from the search space by setting h(w) = ∞.

In the former case of G ⊆ P (m), a relaxed plan is a sub-
set of actions in A(1), . . . , A(m) that suffices to achieve the
goals (under ignoring the delete lists), and it can be extracted
by a simple backchaining loop: For each goal in P (m), se-
lect an action in A(1), . . . , A(m) that achieves this goal, and
iterate the process by considering those actions’ precondi-
tions and the respective effect conditions as new subgoals.
The length of the relaxed plan (aka heuristic value h(w)) is
the number of actions selected in this backchaining process.

In Conformant-FF, this construction is extended with ad-
ditional fact layers uP (t) containing the facts unknown at
time t, and the reasoning is extended to when such un-
known facts become known in the relaxed planning graph.
As the complexity of this type of reasoning is prohibitive,
Conformant-FF further relaxes the planning task by ignor-
ing not only the delete lists, but also all but one of the
unknown conditions of each action effect. That is, if ac-
tion a appears in layer A(t), and for effect e of a we have
con(e) ⊆ P (t) ∪ uP (t) and con(e) ∩ uP (t) 6= ∅, then
con(e) ∩ uP (t) is arbitrarily reduced to contain exactly
one literal, and reasoning is done as if con(e) had this re-
duced form from the beginning. This relaxation converts
implications

∧
c∈con(e)∩uP (t) c(t) → q(t + 1) that the (un-

known) effects induce between unknown propositions into
their 2-projections that take the form of binary implications
c(t) → q(t + 1), with arbitrary c ∈ con(e)∩ uP (t). The set
of all these binary implications forms a DAG. Thus, check-
ing whether a proposition q becomes known at time t can
be done by a backchaining over the implication edges that
end in q(t), followed by a SAT check to see if the initial
belief state formula implies the disjunction of the reachable
tree leafs. Note that this process over-estimates the sets of
propositions that become known at a given time point; Since
it is easier to achieve a fact in relaxed planning, reasoning
about when and what becomes known under relaxation is
a non-sound but complete approximation of this reasoning
without relaxation. Hence, if Conformant-FF discovers that
there is no relaxed plan to a world state w, then w can be
safely excluded from the search.

We now explain our extension of this reasoning process
to the probabilistic setting. Some parts are inherited from
Conformant-FF, and the new parts are dedicated to process-
ing probabilistic belief states and probabilistic actions. We
begin with our procedure for building a probabilistic relaxed
planning graph (or PRPG, for short), then we show how one
can extract a (probabilistic) relaxed plan from the PRPG.

Figure 4 depicts the main routine for building the PRPG.
Layers −n to −1 of PRPG correspond to the m-step ac-
tion sequence a leading to the considered belief state Pa.
The negative indices of the layers are used to simplify the
presentation of reasoning about the past. The PRPG is ini-
tialized with an empty implication set Imp, and P (−m)
and uP (−m) containing the propositions that are known
(hold with probability 1) and unknown (hold with probabil-
ity less 1 but greater than 0) in the initial belief state. The
for loop (lines 3-19) then builds the sets P and uP for the
subsequent time steps, incrementally extending the implica-
tion set Imp. At each iteration −m ≤ t ≤ −1, the sets
P (t + 1) and uP (t + 1) are made to contain the proposi-

procedure build-PRPG (〈a−m, . . . , a−1〉, A, ϕ(NI), G, θ)

1 Imp := ∅, P (−m) := {q | q is known in ϕ(NI)},
2 uP (−m) := {q | q is unknown in ϕ(NI)}
3 for t := −m · · · − 1 do
4 P (t + 1) := {q | q is known after at}
5 uP (t + 1) := {q | q is unknown after at}
6 Imp ∪ = {(q(t), q(t + 1)) | q ∈ uP (t) ∩ uP (t + 1)}
7 for all e ∈ E(at) s.t. con(e) ⊆ P (t) ∪ uP (t) do
8 if at ∈ Ad and con(e) ∩ uP (t) 6= ∅ then
9 select c ∈ con(e) ∩ uP (t)

10 Imp ∪ = {(c(t), q(t + 1)) | q ∈ add(e) ∩ uP (t + 1)}
11 elseif at ∈ Ap

12 for all ε ∈ Λ(e), q ∈ add(ε) ∩ uP (t + 1)

13 introduce new fact ωε
q(t) with weight(ωε

q(t)) = p(ε);
14 Imp ∪ = {(ωε

q(t), q(t + 1))}
15 if con(e) ∩ uP (t) 6= ∅ then
16 select c ∈ con(e) ∩ uP (t)

17 Imp ∪ = {(c(t), ωε
q(t))}

18 endif
19 endif
20 t := 0

21 while get-P(t, G) < θ do
22 A(t) := {a | a ∈ A, pre(a) ⊆ P (t)}
23 build-timestep(t, A(t))

24 if P (t + 1) = P (t) and
25 uP (t + 1) = uP (t) and
26 ∀q ∈ uP (t + 1) : WImpleafs(q(t + 1)) = WImpleafs(q(t)) then
27 return FALSE
28 endif
29 t := t + 1

30 return TRUE

Figure 4: Building a probabilistic relaxed planning graph.

tions that are known/unknown after applying the action at,
respectively. The implication set Imp is extended as follows.
First, we add an implication q(t) → q(t + 1) for every
proposition q that is unknown at both t and t + 1. Then
we consider each effect e ∈ E(at) that has no negatively
known conditions at time t. If action at is deterministic
and not all of its conditions are known at time t (lines 8-
10), then for each considered effect e we add an implication
c(t) → q(t+1) for an arbitrarily chosen unknown condition
of e, and each unknown at t + 1 add effect q of e. Alter-
natively, if action at is probabilistic (lines 12-18), then we
consider each probabilistic outcome ε of e. For each (un-
known at t + 1) add effect q of ε, we introduce a chance
proposition ωε

q(t) with weight(ωε
q(t)) = p(ε), and add an

implication ωε
q(t) → q(t + 1). In addition, if effect e is con-

ditional and not all of its conditions are known at t, then we
add an implication c(t) → ωε

q(t) for an arbitrarily chosen
unknown condition of e.

The next while loop (lines 21-29) constructs the relaxed
planning graph from layer 0 onwards by iterative invocation
of the build-timestep procedure that expands PRPG by a sin-
gle level at each call. This construction is controlled by two
termination tests. If the goal is achieved at layer t with prob-
ability higher than θ, then a relaxed plan can be extracted.
Otherwise, if the graph reaches a fix point, then we know
that no relaxed (and thus, no real) plan exists. The structure
WImpleafs(q(t)) used in this termination test corresponds
to the set of weighted (in a manner described below) leafs of
the Imp subgraph rooted at q(t).

procedure build-timestep (t, A(t))

1 P (t + 1) := P (t), uP (t + 1) := uP (t)

2 Imp ∪ = {(q(t), q(t + 1)) | q ∈ uP (t)}
3 for all a ∈ Ad ∩ A(t), all e ∈ E(a) do
4 if con(e) ⊆ P (t) then P (t + 1) ∪ = add(e) endif
5 if con(e) ⊆ P (t) ∪ uP (t) and con(e) ∩ uP (t) 6= ∅ then
6 uP (t + 1) ∪ = add(e)

7 select c ∈ con(e) ∩ uP (t)

8 Imp ∪ = {(c(t), q(t + 1)) | q ∈ add(e)}
9 endif
10 for all a ∈ Ap ∩ A(t), all e ∈ E(a) do
11 for all ε ∈ Λ(e), all q ∈ add(ε) do
12 uP (t + 1) ∪ = {q}
13 introduce new fact ωε

q(t) with weight(ωε
q(t)) = p(ε);

14 Imp ∪ = {(ωε
q(t), q(t + 1))}

15 if con(e) ∪ uP (t) 6= ∅ do
16 select c ∈ con(e) ∩ uP (t)

17 Imp ∪ = {(c(t), ωε
q(t))}

18 endif
19 for all q ∈ uP (t + 1) \ P (t + 1) do
20 WImpleafs(q(t + 1)) := build-w-impleafs(q(t + 1), Imp)
21 DS := {l | l ∈ WImpleafs(q(t + 1)) ∧ weightq(t+1)(l) = 1}
22 if ϕ(NI) →

W
l∈DS l then P (t + 1) ∪ = {q} endif

23 uP (t + 1) \ = P (t + 1)

procedure build-w-impleafs (q(t), Imp)
1. for all state variables v ∈ Impq(t) do weight(v) := 1

2. for all v ∈ Impq(t) in a reverse topological order of Impq(t) do
3. weightq(t)(v) := weight(v)

4. if (max {weightq(t)(u) | (v, u) ∈ Impq(t)} < 1)then

5. weightq(t)(v)∗ = min {1− δ ,
P

(v,u)∈Impq(t)
weightq(t)(u)}

6. return the set of all leafs l of Impq(t) annotated with weightq(t)(l)

procedure get-P (t, G)

1 if G 6⊆ P (t) ∪ uP (t) then return 0 endif
2 if G ⊆ P (t) then return 1 endif
3 return WMC(ϕ(NI) ∧

V
g∈G\P (t)

W
l∈WImpleafs(g(t)) l)

Figure 5: Building a new layer in the PRPG, and computing
the goal likelihood at time step t.

The build-timestep procedure is shown in Figure 5. The
first for loop (lines 3-9) proceeds over all effects of all de-
terministic actions “applicable” at time t. Effect whose con-
dition is known at time t (possibly) make some additional
facts to be known at time t + 1. Effects whose condition
depends on the actual initial state and/or outcome of proba-
bilistic actions (possibly) add some additional such facts at
time t+1 (together with the appropriate binary implications
in Imp). The second for loop (lines 10-18) proceeds over all
possible outcomes of all probabilistic actions “applicable”
at layer t, providing all the propositions in the add lists of
these outcomes with processing similar to this in lines 14-17
of build-PRPG. Now, let Impq(t′) be the subgraph of Imp
formed by q(t′) and all its predecessors in Imp. The third
for loop (lines 19-22) checks whether an unknown proposi-
tion q becomes known at t + 1. Specifically, it is checked
whether the initial state formula implies one of the leafs l of
Impq(t+1) such that there exists a path in Impq(t+1) from l

to q(t + 1) with all edges of the path being contributed by
deterministic actions only. The latter is determined using the
build-w-impleafs procedure (Figure 5).

The build-w-impleafs procedure constructs a set

WImpleafs(q(t)) of all leafs of Impq(t) weighted with
respect to q(t + 1). Specifically, build-w-impleafs performs
a BFS-style, top-down weight propagation from q(t) down
to the leafs of Impq(t). Together with acyclicity of Imp,
the BFS-style traversal ensures that each variable v is
processed only after processing all variables u such that
Impq(t) contains implication v → u. When processed, v is
assigned with a weight weightq(t)(v) derived from its own
“global” weight weight(v) and the weights weightq(t)(v)
of its immediate successors u in Impq(t). We have:

(1) weightq(t)(v) is an upper bound on the probability of
achieving q at time t by a sequence of actions responsi-
ble for a path from v to q(t) in Imp;

(2) weightq(t)(v) = 1 iff there exists a path from v to q(t)
in Impq(t) where all edges are due to deterministic ac-
tions. (Otherwise, we always have weightq(t)(v) ≤
1− δ, for some arbitrary small 0 < δ � 1.)

Theorem 2 Let (A,NI , G, θ) be a probabilistic planning
task, and a be a sequence of actions applicable in PI . If
build-PRPG(a, A, ϕ(NI), G, θ) returns FALSE, then there
is no relaxed plan for (A,NI , G, θ) that starts with a.

The proof of Theorem 2 is based on three observations.
Let T > 0 be the last layer of the PRPG upon the termi-
nation of build-PRPG. First, for every −m ≤ t ≤ T , the
sets P (t) and uP (t) contain all (and only all) propositions
that are known (respectively unknown) after executing all
the actions in the action layers up to A(t − 1). Second, if
build-PRPG returns FALSE, then the corresponding termi-
nation criterion would hold in all future iterations. Finally,
if the PRPG does contain a relaxed plan for (A,NI , G, θ),
then we have get-P(T,G) ≥ θ, and thus (together with the
second observation) build-PRPG cannot return FALSE.

To see the latter, consider the details of the procedure
get-P as in Figure 5. This procedure is used to compute
the goal likelihood at time t. First, if one of the subgoals
is negatively known at time t, then the overall probability
of achieving the goal is 0. On the other extreme, if all the
subgoals are known at time t, then the probability of achiev-
ing the goal is trivially 1. This leaves us with the main case
in which we are uncertain about some of the subgoals, and
this uncertainty is either due to dependence of these sub-
goals on the actual initial world state, or due to achieving
these subgoals using probabilistic actions (or due to both.)
The uncertainty about the initial state is fully captured by
our weighted CNF ϕ(NI). Likewise, the new chance propo-
sitions ωε

q(t
′) introduced in build-PRPG and build-timestep

for the add lists of probabilistic outcomes are “chained up”
in Imp to the propositions on these add lists, and “chained
down” in Imp to the (relaxed) conditions of these outcomes,
if any. Therefore, if some add effect q of a probabilistic ac-
tion at time t′ < t is relevant to achieving a subgoal g ∈ G
at time t, then the corresponding chance variable ωε

q(t
′) will

appear in Impg(t), and its weight will be properly propa-
gated by build-w-impleafs(g(t), Imp) down to the leafs of
Impg(t). (For unconditional probabilistic actions, ωε

q(t
′) is

in already a leaf in Imp.)

Example 2 To illustrate the treatment of probabilistic ef-
fects, consider the following simple throw-a-dice exam-
ple. The only propositions are q1, . . . , q6 with the obvi-
ous meaning. The initial state is empty, G = {q6}. We
have a single, probabilistic, action throw-a-dice that has
a single unconditional effect with six equiprobable out-
comes ε1, . . . , ε6, where add(εi) = {qi} and del(εi) =
∅. Figure 6 depicts an excerpt of the implication graph
constructed by t = 3. The probability of throwing a
six in three throws (that is, the probability of q6 after
a sequence of three actions throw-a-dice) is equal to
WMC

(
ωε6

q6
(0) ∨ ωε6

q6
(1) ∨ ωε6

q6
(2)

)
.

ωε6
q6

(0) // q6(1) // q6(2) // q6(3)

ωε6
q6

(1)

55llll

ωε6
q6

(2)

==zzzzzzz

. . .

Figure 6: Implication graph for throw-a-dice example.

If build-PRPG succeeds at a level T , then a relaxed plan
can be extracted from this PRPG using the extract-PRPlan
procedure (Figure 7). The sets G(1), . . . , G(T) used in
this procedure store goals and subgoals arising at layers
1 ≤ t ≤ T . First, the for loop in lines 1-7 processes the
goals that remain unknown at T . For each such goal g, and
each4 leaf l of the implication subgraph Impg(T), the proce-
dure selects an arbitrary path from l to g(T), and adds to
the relaxed plan all the actions responsible for the edges of
this path. The next for loop (lines 9-21) accomplishes the
construction of the relaxed plan in a way similar in spirit to
Conformant-FF. Specifically, for each goal/subgoal g(t), if
there is a deterministic action a in A(t − 1) that guarantees
to always achieve g, then one such action is added to the re-
laxed plan. Otherwise, the relaxed plan is extended with a
set of all actions responsible for a set of implication paths
from all leafs in DS ⊆ WImpleafs(g(t)) (similar to this in
line 21 of build-timestep) to g(t).

In summary, if build-PRPG returns TRUE, then we set
h(a) to the number of actions selected by extract-PRPlan.
Otherwise, we set h(a) = ∞, and the corresponding belief
state Pa is excluded from the search.

Empirical Results
We implemented the techniques described in the previous
sections in C, starting from the Conformant-FF code. We
call the implemented system Probabilistic-FF. With θ =
1.0, Probabilistic-FF behaves exactly like Conformant-FF.
Otherwise, Probabilistic-FF uses Cachet (Sang, Beame, &
Kautz 2005) for the weighted model counting. The experi-
ments were run on a PC running at 1.2GHz with 1GB main
memory and 1024KB cache running Linux.

4In attempt to minimize the length of the extracted relaxed plan,
one can consider only a minimal subset L of Impleafs(g(T)), con-
structed by a greedy iterative removal of the leaves until the goal
probability gets too low. This minimization, however, can be costly
due to the required numerous calls to model counting.

procedure extract-PRPlan (G, θ)

1 for each g ∈ G \ P (T) do
2 for each l ∈ WImpleafs(g(T))

3 pick an arbitrary path ρ in Imp from l to g(T)

4 for i := 0 . . . T − 1 do
5 if some edge in ρ is due to an effect e of an action a ∈ A(i):
6 select a at time i

7 sub-goal((pre(a) ∪ con(e)) ∩ P (i))

8 sub-goal(G ∩ P (T))

9 for t := T, . . . , 1 do
10 for all g ∈ G(t) do
11 if ∃a ∈ A(t − 1) ∩ Ad, ∃e ∈ E(a) such that

g ∈ add(e), pre(a) ⊆ P (t − 1), con(e) ⊆ P (t − 1) then
12 select one such pair a and e

13 sub-goal(pre(a) ∪ con(e))

14 else
15 DS := {l | l ∈ WImpleafs(g(t)) ∧ weightg(t)(l) = 1}
16 for each l ∈ DS

17 pick a path ρ in Imp from l to g(t) such that
∀q ∈ ρ : weightg(t)(q) = 1

18 for i := 0 . . . t − 1 do
19 if some edge in ρ is due to an effect e of an action a ∈ A(i):
20 select a at time i

21 sub-goal((pre(a) ∪ con(e)) ∩ P (i))

procedure sub-goal (P): for all p ∈ P , G(min{t | p ∈ P (t)}) ∪ = {p}

Figure 7: Extracting a probabilistic relaxed plan.

As said, at the current stage of development support is
implemented only for deterministic effects. This makes
comparison with previous planners (Maxplan (Majercik &
Littman 1998) and CPP (Hyafil & Bacchus 2004)) particu-
larly difficult – apart from the very different input languages
– since the experiments done by these authors focused ex-
clusively on rather simple or even fully known initial states,
and probabilistic effects. Instead, our experiments focus on
highly non-trivial uncertain initial states, but deterministic
effects. As a concrete means of comparison, we ran Max-
plan on some of our benchmarks. In all cases, Maxplan ran
out of time (> 1 hour) on instances far from a size where
Probabilistic-FF’s runtime becomes even measurable. We
couldn’t run CPP due to technical problems. Some more de-
tails on all this are given below. (From the comparison be-
tween Maxplan and CPP (Hyafil & Bacchus 2003), it seems
very likely that CPP would not scale into regions challeng-
ing for Probabilistic-FF.) Note that Maxplan and CPP both
plan for a given length bound, returning the best (maximal
goal likelihood) plan of that length; to plan for a given θ,
these planners would (theoretically) have to be run with it-
eratively increased bound.

As a rougher means of comparison, note that the perfor-
mance limit of Maxplan and CPP is, generally speaking,
reached in solving instances with around 100 world states
and 15-20 steps plans. In contrast, with Probabilistic-FF we
can find 100-step plans for instances with billions of world
states. The results are in Table 1. We show the relevant
search data, for different instances, and for different settings
of the goal threshold θ. As a coarse measure of instance size,
we specify the numbers of ground actions and ground facts,
as well as an estimate of the number of world states.

θ = 0.25 θ = 0.5 θ = 0.75 θ = 1.0

Instance #actions / #facts / #world states t/tWMC/|S|/l t/tWMC/|S|/l t/tWMC/|S|/l t/|S|/l

Safe-uni-70 70 / 71 / 140 2.21/0.37/19/18 6.19/2.15/36/35 13.47/6.64/54/53 7.72/71/70
Safe-cub-70 70 / 70 / 138 0.58/0.02/6/5 1.30/0.12/13/12 2.57/0.44/22/21 7.49/70/69

Cube-uni-11 6 / 66 / 1331 1.31/0.30/105/18 1.52/0.26/127/24 2.37/0.38/165/28 5.69/257/30
Cube-cub-11 6 / 66 / 1331 0.16/0.03/24/5 0.46/0.09/51/9 0.66/0.15/74/13 5.65/257/30

Bomb-50-1 51 / 102 / > 251 0.07/0.01/1/0 2.64/0.60/662/31 7.29/1.84/1192/71 4.38/1325/99
Bomb-50-5 255 / 110 / > 255 0.07/0.01/1/0 1.93/0.44/468/27 6.09/1.54/998/67 3.86/1131/95
Bomb-50-10 510 / 120 / > 260 0.07/0.01/1/0 1.16/0.24/248/22 4.93/1.20/778/62 3.26/911/90
Bomb-50-50 2550 / 200 / > 2100 0.10/0.01/1/0 0.32/0.02/17/16 0.41/0.06/37/36 0.48/51/50

Log-2 3440 / 1040 / > 2010 1.26/0.01/117/54 1.59/0.01/152/62 2.21/0.01/205/69 2.51/295/78
Log-3 3690 / 1260 / > 3010 3.60/0.01/159/64 10.56/0.01/328/98 6.00/0.01/336/99 5.23/364/105
Log-4 3960 / 1480 / > 4010 3.29/0.01/138/75 11.54/0.01/391/81 8.14/0.01/377/95 10.48/554/107

Grid-2 2040 / 825 / > 3610 0.22/0.01/39/21 1.91/0.14/221/48 10.05/0.06/1207/69 9.65/1207/69
Grid-3 2040 / 841 / > 3610 22.61/0.09/1629/76 20.77/2.22/1119/89 108.71/11.53/3974/123 93.84/3974/123
Grid-4 2040 / 857 / > 3610 38.39/0.13/2167/96 72.28/1.26/2541/111 71.80/0.53/2541/115 281.08/6341/155

Rovers-7 393 / 97 / > 63 ∗ 38 0.03/0.00/37/18 0.03/0.00/37/18 0.03/0.00/37/18 0.03/0.00/37/18
RoversP-7 393 / 133 / > 63 ∗ 38 3.60/0.00/942/65 3.06/0.00/983/75 3.29/0.00/1008/83 3.82/1008/83
RoversPP-7 393 / 133 / > 63 ∗ 38 9.77/0.01/948/65 14.26/0.10/989/75 14.70/0.12/994/77 18.49/1014/83
RoversPPP-7 395 / 140 / > 63 ∗ 38 28.46/2.36/950/67 45.61/1.14/996/79 0.02/proved unsolvable 0.02/proved unsolvable

Table 1: Empirical results. Times t in seconds (tWMC is time spent in WMC, which is none if the goal request is 1.0), search
space size |S| (number of calls to the heuristic function), plan length l.

Our first three domains are probabilistic versions of
traditional conformant benchmarks: “Safe”, “Cube”, and
“Bomb”. In Safe, each of n combinations of a safe must
be tried to make sure the safe is open. We implemented
two probability distributions over the n combinations, a uni-
form one (“Safe-uni”) and a distribution that declines ac-
cording to a cubic function (“Safe-cub”). Table 1 shows
that Probabilistic-FF can solve this very efficiently even with
n = 70. In Safe-cub, less combinations must be tried since a
lot of “weight” is contained in the combinations at the start
of the cubic distribution (the last combination has weight
0 and so needs not be tried even with θ = 1.0). Observe
that, rather than resulting in a performance decline, moving
from θ = 1.0 to θ < 1.0 (from Conformant-FF to cases
that require weighted model counting) even improves per-
formance (except for θ = 0.75 in Safe-uni) since the plans
become shorter. In Cube, the task is to move into a corner of
a 3-dimensional grid. Again, we implemented uniform and
cubic distributions (over the initial position in each dimen-
sion), and again, Probabilistic-FF scales well, easily solv-
ing instances on a 11 × 11 × 11 grid, becoming faster with
decreasing θ. (We also tried a version of Cube where the
task is to move into the grid center; like Conformant-FF,
Probabilistic-FF is bad at doing so, reaching its performance
limit at n = 7.) Our version of Bomb contains n bombs and
m toilets, where each bomb may be armed or not armed in-
dependently, resulting in huge numbers of initially possible
world states. In the depicted instances, each bomb has a 0.02
chance of being armed. Dunking a bomb in a toilet clogs
the toilet, which must then be flushed. Like Conformant-
FF, Probabilistic-FF scales to large n, and becomes faster
as m increases. And again, we obtain the nice pattern of
improved performance as we move from non-probabilistic
(θ = 1.0) into probabilistic planning (specifically, θ ≤ 0.5;
for θ ≤ 0.25, the initial state is good enough already). We

remark that, for all of Safe, Cube, and Bomb, Probabilistic-
FF’s plans are optimal (the shortest possible).

Our next three domains are adaptations of benchmarks
from deterministic planning: “Logistics”, “Grid”, and
“Rovers”. We assume that the reader is familiar with these
domains. Each “Log-x” instance contains 10 cities, 10 air-
planes, and 10 packages, where each city has x locations.
The packages are with chance 0.88 at the airport of their
origin city, and uniformly at any of the other locations in
that city. The effects of all loading and unloading actions
are conditional on the (right) position of the package. Note
that higher values of x increase not only the space of world
states, but also the initial uncertainty. We again observe the
nice scaling properties discussed above.5 Grid is the com-
plex grid world run in the AIPS’98 planning competition,
featuring locked positions that must be opened with match-
ing keys. “Grid-x” here is a modification of instance nr. 2
(of 5) run at AIPS’98, with a 6× 6 grid, 8 locked positions,
and 10 keys of which 3 must be transported to a goal posi-
tion. Each lock uniformly has x possible shapes, and each
of the 3 goal keys uniformly has x possible initial positions.
The effects of pickup-key, putdown-key, and open-lock ac-
tions are conditional. The scaling behavior is similar as in
the previous domains. Our Rovers instances, finally, are
modifications of instance nr. 7 (of 20) run at the AIPS’02
planning competition, with 6 waypoints, 3 rovers, 2 objec-
tives, and 6 rock/soil samples. From “Rovers” to “Rover-
sPPP” we modify the instance/domain as follows. “Rovers”
is the original AIPS’02 domain and instance for compari-

5The hardest Logistics instance used to test CPP (Hyafil & Bac-
chus 2004) has 4 cities of size 2, 1 airplane, and 2 packages. There,
CPP solves 13 steps in 6400 seconds on a 2.4GHz machine, and
runs out of 3GB memory for 14 steps. While CPP incorporates
non-deterministic effects, we believe that this – in comparison to
our results – still says something about scaling in Logistics.

son. In “RoversP”, each sample is with chance 0.8 at its
original waypoint, and with chance 0.1 at each of two oth-
ers; each objective may be visible from 3 waypoints with
uniform distribution (this is a probabilistic adaptation of the
domain from (Bryce & Kambhampari 2004)). “RoversPP”
enhances this by conditional probabilities in the initial state,
stating that whether or not an objective is visible from a way-
point depends on whether or not a rock sample (intuition: a
large piece of rock) is located at the waypoint. The proba-
bility of visibility is much higher if the latter is not the case
(concretely, the visibility of each objective depends on the
locations of two rock samples; if a rock sample is present
then the visibility probability drops to 0.1). “RoversPPP”,
finally, introduces the need to collect data about water ex-
istence. Each of the soil samples has a certain likelihood
(below 1) to be “wet”. An additional operator tests, for com-
municated sample data, if the sample was wet; if so, a fact
“know-that-water”, that is contained in the goals, is set to
true. The probability of being wet depends on the location
of the sample. Goal probabilities θ = 0.75 and θ = 1.0 can
not be achieved, which is proved by the heuristic function,
providing the correct answer in split seconds.

As for Maxplan and CPP, due to technical problems (not
on our side) with the CPP distribution, that were not resolved
by the time of writing this paper, it was impossible to run
CPP on our benchmarks. We ran Maxplan in Safe, Cube,
and Bomb. In Safe with 10 combinations, we obtained a plan
with 5 steps (goal likelihood 0.5) in 270 seconds. Setting the
bound to 6, Maxplan ran out of time (killed after 1 hour). In
Cube, Maxplan easily solved a 3× 3× 3 grid up to 6, where
the goal is achieved with certainty. It found plans within a
few hundred seconds for 4× 4× 4 and 5× 5× 5 grids with
a bound of 5, but with bound 6 ran out of time. In Bomb,
finally, 10 bombs 10 toilets could only be done up to bound
3 (270 seconds), and 10 bombs 1 toilet failed at bound 8.

Conclusion
We developed a synergetic combination of Conformant-FF
with recent techniques for probabilistic reasoning. The re-
sulting planner scales well in several adaptations of known
planning benchmarks, constituting an advance of several or-
ders of magnitude to the state of the art in probabilistic plan-
ning with no observability and deterministic actions. We do
not claim that this solves the (this particular) problem once
and for all: Probabilistic-FF inherits strengths and weak-
nesses from FF and Conformant-FF, like domains where
FF’s heuristic function yields bad estimates, or domains (e.g.
the mentioned Cube-center variant) where Conformant-FF
gets lost due to heuristic inaccuracy combined with a high
degree of uncertainty. We do believe that the synergy be-
tween WMC and Conformant-FF’s CNF-based techniques
constitutes a major step forward.

Next, of course, we will implement the presented treat-
ment of probabilistic effects, and evaluate its performance.
In the long term, we intend to work towards applicabil-
ity in real-word settings, particularly in the space applica-
tion settings that our Rovers domain hints at, in medication-
type treatment planning domains, and in the power supply
restoration domain (e.g., (Bertoli et al. 2002)).

References
Bertoli, P.; Cimatti, A.; Pistore, M.; Roveri, M.; and
Traverso, P. 2001. MBP: a model based planner. In IJ-
CAI’01 Workshop on Planning under Uncertainty.
Bertoli, P.; Cimatti, A.; Slaney, J.; and Thiébaux, S. 2002.
Solving power supply restoration problems with planning
via symbolic model-checking. In ECAI’02, 576–580.
Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In AIPS’00.
Boutilier, C.; Friedman, N.; Goldszmidt, M.; and Koller,
D. 1996. Context-specific independence in Bayesian net-
works. In UAI’96, 115–123.
Brafman, R. I., and Hoffmann, J. 2004. Conformant plan-
ning via heuristic forward search: A new approach. In
ICAPS’04, 355–364.
Bryce, D., and Kambhampari, S. 2004. Heuristic guidance
measures for conformant planning. In ICAPS’04, 365–374.
Chavira, M., and Darwiche, A. 2005. Compiling Bayesian
networks with local structure. In IJCAI’05, 1306–1312.
Darwiche, A. 2000. Recursive conditioning. AIJ 125(1-
2):5–41.
Dechter, R. 1999. Bucket elimination: A unified frame-
work for reasoning. AIJ 113:41–85.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.
Hyafil, N., and Bacchus, F. 2003. Conformant probabilistic
planning via CSPs. In ICAPS’98, 205–214.
Hyafil, N., and Bacchus, F. 2004. Utilizing structured
representations and CSPs in conformant probabilistic plan-
ning. In ECAI’04, 1033–1034.
Jensen, F. 1996. An Introduction to Bayesian Networks.
Springer Verlag.
Kushmerick, N.; Hanks, S.; and Weld, D. 1995. An algo-
rithm for probabilistic planning. AIJ 78(1-2):239–286.
Littman, M.; Goldsmith, J.; and Mundhenk, M. 1998. The
computational complexity of probabilistic planning. JAIR
9:1–36.
Majercik, S., and Littman, M. 1998. MAXPLAN: A new
approach to probabilistic planning. In AIPS’98, 86–93.
Majercik, S., and Littman, M. 2003. Contingent planning
under uncertainty via stochastic satisfiability. AIJ 147(1-
2):119–162.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kaufmann.
Roth, D. 1996. On the hardness of approximate reasoning.
AIJ 82(1-2):273–302.
Sang, T.; Beame, P.; and Kautz, H. 2005. Solving Bayes
networks by weighted model counting. In AAAI’05.
Sang, T.; Bacchus, F.; Beame, P.; Kautz, H.; and Pitassi, T.
2004. Combining component caching and clause learning
for effective model counting. In SAT’04.
Zhang, N., and Poole, D. 1994. A simple approach to
Bayesian network computations. In AI’94.

