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Abstract

Conformant planning is the task of generating plans given uncertainty about the initial state and action effects, and without any
sensing capabilities during plan execution. The plan should be successful regardless of which particular initial world we start from.
It is well known that conformant planning can be transformed into a search problem in belief space, the space whose elements are
sets of possible worlds. We introduce a new representation of that search space, replacing the need to store sets of possible worlds
with a need to reason about the effects of action sequences. The reasoning is done by implication tests on propositional formulas
in conjunctive normal form (CNF) that capture the action sequence semantics. Based on this approach, we extend the classical
heuristic forward-search planning system FF to the conformant setting. The key to this extension is an appropriate extension of
the relaxation that underlies FF’s heuristic function, and of FF’s machinery for solving relaxed planning problems: the extended
machinery includes a stronger form of the CNF implication tests that we use to reason about the effects of action sequences.
Our experimental evaluation shows the resulting planning system to be superior to the state-of-the-art conformant planners MBP,
KACMBP, and GPT in a variety of benchmark domains.
 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Conformant planning is the task of generating plans given uncertainty about the initial state and action effects, and
without any sensing capabilities during plan execution. The plan should be successful (achieve all goal propositions)
regardless of which particular initial world we start from and which action effects occur.

Conformant planning can be transformed into a search problem in the space of belief states, i.e., the space whose
elements are sets of possible world states. This way, our uncertainty about the true current world state is modeled via
the set of world states that we consider possible at this time. (Throughout the paper, we stick to this distinction between
world states and belief states.) Bonet and Geffner [1] introduced the idea of planning in belief space using heuristic
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forward search. But the number of possible worlds in a belief state is typically large—even in simple examples like the
infamous Bomb-in-the-toilet problem, there are exponentially many worlds in the initial belief state—and so Bonet
and Geffner’s system GPT, which explicitly represents these states, usually fails to scale up. In a number of planners,
Bertoli, Cimatti, and Roveri [2,3] tackle this problem by using BDDs to represent the belief states. This often works
better, but the size of the constructed BDDs is still prohibitive for scaling in many cases.1

In this paper we suggest a third, lazy, approach to represent belief states. The approach assumes, in its current form,
that the goal and action preconditions are restricted to simple conjunctions of propositions, as in STRIPS.2 We observe
that, for conformant planning in this setting, it suffices to know the propositions that are true in the intersection of
the worlds contained in a belief state—only these propositions will be true no matter what initial world we start from.
An action sequence is a conformant plan iff it leads to a belief state where the intersection of the worlds contains
all goal propositions. In our framework, a belief state s is represented just by the initial belief state representation
together with the action sequence act that leads to s. To check for fulfillment of the goal and of action preconditions,
we then test, for each proposition p, if it is contained in the intersection of the worlds in s, i.e., if p is always true after
executing act. We say that such propositions are known in s. Doing the test for a proposition is hard in general; the
corresponding decision problem is easily shown to be co-NP complete. Our implementation does the test by checking
whether the proposition is implied by a CNF formula that captures the semantics of the action sequence.

In comparison to the belief state representations used in GPT and MBP, our approach trades space for time: assume
the planner faces a belief state s and an applicable action a, and wants to know what the outcome s′ of applying a to s

would be. If, like in GPT and MBP, the planner maintains complete knowledge of s in memory then the computation
can be done based exclusively on that knowledge. In our approach, however, the planner has no knowledge about s

in memory other than the known propositions (and the path to s). To determine the known propositions for s′, the
planner has to reason about the entire action sequence leading to s′, including those actions that lead to s. Our
intuition is that modern SAT solvers, which can easily handle problem instances with tens of thousands of variables
and clauses, will have little trouble reasoning about the effects of an action sequence if the possible interactions are
not overly complex. Indeed, this intuition is supported quite impressively by excellent results we obtained in a variety
of benchmark domains, using a largely naive DPLL [4,5] implementation as the underlying SAT solver.

While our representation of belief states is relatively efficient, a blind traversal of the search space is still infeasible
due to the combinatorial explosion in possible action sequences. In classical planning (with no uncertainty about the
initial state or action effects), this problem has been tackled most successfully by using heuristic functions based on a
relaxation of the planning task, where the relaxation is to assume that all delete lists are empty. To each search state
during, e.g., a forward search, a relaxed plan is computed. The length of the relaxed plan provides an, often very
informative, estimate of the state’s goal distance. FF [6] is one particularly successful system that uses this technique.
Beside the search space representation, the main contribution of our work is the adaptation of the relaxation, and of
FF’s heuristic function, to the conformant setting. We discuss different options how to extend the relaxation to the
conformant setting. After choosing one of these options, we extend FF’s relaxed planning process to handle such
relaxed conformant problems. We enrich FF’s machinery with a stronger form of the CNF reasoning that is done to
determine the known propositions in the belief states. In a nutshell, the stronger reasoning corresponds to a 2-CNF
projection of the real formula that would be needed to decide about known propositions during relaxed planning.
Relative to that formula, the reasoning is thus complete, but not sound. We prove that the reasoning is complete and
sound relative to our extended relaxation.

Our implementation, which we call Conformant-FF, is based on the FF code, and uses the same overall search
arrangement as FF. We experimentally compare Conformant-FF with the state-of-the-art conformant planners MBP
and KACMBP [3]—the latter is a conformant planner that has more advanced conformant planning heuristics than
MBP. In a number of traditional conformant benchmarks, our experiments show Conformant-FF to be competitive:
it often outperforms MBP, but is generally not as efficient as KACMBP. On the positive side, our approach demon-
strates the potential to combine the strengths of FF with conformant abilities in domains that combine classical and
conformant aspects. In a number of classical planning benchmarks enriched with uncertainty, Conformant-FF shows
fine scalability, dramatically outperforming MBP as well as KACMBP. We also run limited experiments with GPT

1 It should be noted that GPT and the BDD-based MBP planner are capable of doing much more than conformant planning.
2 Extension to handle disjunctions is conceptually easy; we outline in the conclusion of the paper how to do so.
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and with POND [7], a recent conformant planner using techniques related to Conformant-FF. The results indicate that,
in many domains, Conformant-FF outperforms these planners too.

In our current implementation of Conformant-FF, we only deal with uncertainty about the initial state, i.e. we do
not deal with non-deterministic effects. The extensions necessary to make Conformant-FF handle such effects are
conceptually easy, with one important exception, namely repeated states checking. While there is a straightforward
extension for repeated states checking in the presence of non-deterministic effects, it is more than doubtable that this
extension would work well, i.e., have reasonable pruning power, in practice. We have not yet worked out an extended
technique that appears practical. We leave this open for future work. To inform the reader about the main issues in this
important aspect of Conformant-FF’s further development, we include an extra section on non-deterministic effects.
In the other parts of the paper, only uncertainty about the initial state is considered.

The paper is organized as follows. Section 2 briefly describes the planning framework we consider. Section 3
describes the search space representation and the computation of known propositions. Section 4 discusses conformant
relaxations and explains our extension of FF’s heuristic function (this is the technically most challenging part of our
work, and the section forms more than half of the technical part of this paper). Section 5 explains how we avoid
repeated search states. Section 6 gives some implementation details and our empirical results. Section 7 discusses
non-deterministic effects, Section 8 discusses related work. Section 9 concludes the paper and gives an outlook on
future work. All non-trivial proofs are moved into Appendix A, and are replaced in the text by proof sketches, to
improve readability.

2. Planning background

The conformant planning framework we consider adds uncertainty to a subset of the classical ADL language.
The subset of ADL we consider is (sequential) STRIPS with conditional effects, i.e., the following. Propositional
planning tasks are triples (A, I,G) corresponding to the action set, initial world state, and goals. I and G are sets
of propositions. Actions a are pairs (pre(a),E(a)) of the precondition—a set of propositions—and the effects—a set
of conditional effects. A conditional effect e is a triple (con(e),add(e),del(e)) of proposition sets, corresponding
to the effect’s condition, add, and delete lists respectively (for conformant planning, one needs conditional effects as
otherwise the same action sequence can hardly achieve the goal from different initial worlds). An action a is applicable
in a world state w if pre(a) ⊆ w, i.e., if the world state satisfies all of a’s preconditions. If a is not applicable in w,
then the result of applying a to w is undefined. If a is applicable in w, then all conditional effects e ∈ E(a) get
executed whose condition satisfies con(e) ⊆ w (unconditional effects have con(e) = ∅); we say that such effects
occur. Executing a conditional effect e in w results in the world state w − del(e) + add(e). We require that actions
are not self-contradictory, i.e., if there is a proposition p such that, in world state w, p ∈ add(e) and p ∈ del(e′) for
two effects e and e′ that both occur, then the result of applying the respective action is undefined. An action sequence
is a plan (a solution) if the world state that results from iterative execution of the actions, starting in the initial world
state, leads to a goal state, i.e. to a world state that contains all the goals.

The conformant planning setting we consider extends the above with uncertainty about the initial state. The initial
state is now a belief state that is represented by a propositional CNF formula I . The possible initial world states are
those that satisfy that formula. Slightly abusing the powerset notation, we denote the (possibly exponentially large) set
of the possible initial world states with 2I . An action sequence is called executable if all actions in it are applicable at
their point of execution no matter what initial world state one starts from. An action sequence act ∈ A∗ is a plan for a
task (A,I,G) if, for any possible initial world state I ∈ 2I , executing act in I results in a goal state. (Note that plans
are executable by this definition.)

By saying that the result of applying non-applicable actions is undefined, we require that all actions in the plan
must be applicable at their point of execution no matter what the initial world state is. An alternative definition is
to say that, if an action is not applicable in a world state, then applying the action does not change that world state.
This alternative definition is of theoretical interest for our heuristic function (Section 4.1), and we call it generous.
If an action sequence act solves a task (A,I,G) according to the generous definition of the result function, then act
is called a generous plan for (A,I,G). Note that, given a task (A,I,G), if for all actions a and effects e ∈ E(a)

one includes pre(a) into con(e), and then sets pre(a) := ∅, then the resulting task under the non-generous semantics
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corresponds exactly to the original task under the generous semantics. So the generous semantics can be simulated
with the non-generous semantics and using the latter does not make us lose generality.3

3. Search space

As explained in the introduction, we perform a forward search in belief space. The search states are belief states.
A belief state s is represented by the initial state representation I together with the action sequence act that leads
from the initial state to s. In line with our definition of action semantics, during search we make sure that every action
in the sequence will be applicable, no matter what the initial world state is; that is, we ensure that every considered
action sequence is executable. The reasoning necessary for this, as well as for detecting goal belief states, is based on
the computation of known propositions.

For each belief state encountered during search (including the initial belief state), we compute the sets of known
and negatively known propositions. These are defined as follows. Given a conformant planning task (A,I,G), a belief
state s corresponding to an executable action sequence act ∈ A∗, and a proposition p, we say that p is known in s if,

for all I ∈ 2I , executing act in I results in a world state that contains p. We say that p is negatively known in s if
for all I ∈ 2I executing act in I results in a world state that does not contain p (knowing the propositions that will
always be false helps speed up the reasoning, see below). A proposition that is neither known nor negatively known is
unknown. Deciding about whether a proposition is known or not is co-NP complete.

Proposition 1. Given a conformant planning task (A,I,G), a belief state s represented by an action sequence
act ∈ A∗, and a proposition p. Deciding whether p is known in s is co-NP complete.

Proof. This result essentially follows from Theorem 2 of [9]. The following is a direct argument: We consider the
complementary problem. Membership in NP: non-deterministically guess an initial world state, and check if it satis-
fies I , and if p does not hold upon execution of act. NP-hardness follows by a trivial reduction from SAT. Given a
propositional CNF formula φ, just take that formula to be the initial formula I , and ask if some proposition p not
contained in φ is not known in the state that results from executing the empty action sequence. This is the case, by
definition, iff φ is satisfiable: p can only be known if 2I is empty. �

Note that the proposition holds independently of the allowed goal conditions, and that the hardness result holds
even if there are no actions at all. The hardness of the decision problem follows already from the fact that the initial
state is a CNF formula.

We compute the sets of known and negatively known propositions in a search (belief) state by using a CNF
corresponding to the semantics of the respective (executable) action sequence as follows. We use a time index to
differentiate between values of propositions at different points along the execution of the action sequence. Say the
action sequence is act = 〈a1, . . . , an〉. We obtain our CNF φ(act) as follows. We initialize φ(act) as I indexed with
time 0 (i.e., for each clause l1 ∨ · · · ∨ lk in I we add l1(0) ∨ · · · ∨ lk(0) into φ(act)). We then use a1 to extend φ(act):

• Effect Axioms. For every effect e of a1, con(e) = {c1, . . . , ck}, and every proposition p ∈ add(e), we insert the add
effect axiom clause ¬c1(0) ∨ · · · ∨ ¬ck(0) ∨ p(1). For every proposition p ∈ del(e), we insert the delete effect
axiom clause ¬c1(0) ∨ · · · ∨ ¬ck(0) ∨ ¬p(1).

• Frame Axioms. For every proposition p, let e1, . . . , en be the effects of a1 such that p ∈ del(ei). For every tuple
c1, . . . , cn such that ci ∈ con(ei) we insert the positive frame axiom clause ¬p(0) ∨ c1(0) ∨ · · · ∨ cn(0) ∨ p(1).
(Read this clause as an implication: if p was true before and has not been deleted by either of ei , it is still true
after a1.) Symmetrically, when e1, . . . , en are the effects of a1 such that p ∈ add(ei), we insert for every tuple
c1, . . . , cn with ci ∈ con(ei) the negative frame axiom clause p(0) ∨ c1(0) ∨ · · · ∨ cn(0) ∨ ¬p(1) (if p was false
before and has not been added, it is still false after a1).

3 One can also simulate the non-generous semantics with the generous semantics, by introducing a new goal proposition that is true initially, and
that gets deleted whenever an action is executed whose precondition is not satisfied [8].
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Fig. 1. A simple example task.

In the same fashion, we use a2 to further extend the formula and so on until the axioms for an have been inserted.
Note that, if one of the ei that deletes/adds p has an empty effect condition, then no positive/negative frame axioms
are inserted for p.4 The resulting CNF φ(act) captures the semantics of act in the following sense.

Proposition 2. Given a conformant planning task (A,I,G), and an executable n-step action sequence act ∈ A∗. Say
we have a possible initial world state I ∈ 2I and a proposition p. Then there is exactly one satisfying assignment σ

to φI (act) (φ(act) where all variables at time 0 have been set to their values in I ), and p holds upon execution of act
in I iff σ(p(n)) = TRUE.

Proof. Given fixed values for all variables at time 0, the axioms explicitly enforce a value for every proposition at
every time step—either it is a (conditional) effect or its value remains the same due to an appropriate frame axiom. The
enforced proposition values correspond exactly to the values that the respective propositions take on at the respective
points in the plan. �

Note that φ(act) is basically a description of act’s semantics in the situation calculus [10]. The formula does not
need to talk about action preconditions since act is assumed to be executable. (If act is not executable then Propo-
sition 2 does not hold because a non-applicable action will result in an undefined state, but not affect the satisfying
assignment to the formula.)

Proposition 2 immediately leads to the following simple result, which we use to compute the sets of known propo-
sitions.

Proposition 3. Given a conformant planning task (A,I,G), a belief state s represented by an executable n-step
action sequence act ∈ A∗, and a proposition p. Then p is known in s iff φ(act) implies p(n).

Proof. The formula φ(act) ∧ ¬p(n) is unsatisfiable, with Proposition 2, iff there is no I ∈ 2I such that p does not
hold upon executing act in I . �

We remark that Proposition 3 is not a new result; it can be obtained using Theorem 2 of [9]. The proof via Propo-
sition 2 is kept in this paper just for reasons of self-containedness.

We use Proposition 3 to compute the set of known propositions as follows. Start with the empty set. Then, for each
proposition p, hand φ(act)∧¬p(n) over to the underlying SAT solver. If the result is “unsat” then add p to the known
propositions. If the result is “sat”, do nothing. Symmetrically, we compute the set of negatively known propositions
by handing the formulas φ(act) ∧ p(n) over to the SAT solver.

Example 1. Say we have a robot that is initially at one out of two locations, modeled as I = {at-L1 ∨at-L2,¬at-L1 ∨
¬at-L2}. Our goal is to be at L2, and we have a move-right action that has an empty precondition, and the conditional
effect (con = {at-L1}, add = {at-L2}, del = {at-L1}). A graphical sketch of this example is given in Fig. 1; the example
will be re-used throughout the paper.

The known propositions in the search state s corresponding to the sequence act = 〈move-right〉 are computed as
follows. The formula φ(act) consists of the following clauses:

4 Note also that the number of frame axioms is exponential in the number of distinct conditional effects of a single action that can add/delete the
same proposition. One can avoid this by introducing, for each time point t , a new proposition p(e)(t) for each conditional effect e of the action
applied at t , and ensuring that p(e)(t) is true iff e occurs at time t . Single frame axioms of the form ¬p(t) ∨ p(e1)(t) ∨ · · · ∨ p(en)(t) ∨ p(t + 1)

then suffice. We do not do this because in practice actions rarely affect the same proposition with different effects.
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• at-L1(0) ∨ at-L2(0) and ¬at-L1(0) ∨ ¬at-L2(0): initial state formula.
• ¬at-L1(0) ∨ at-L2(1): add effect axiom for move-right.
• ¬at-L1(0) ∨ ¬at-L1(1): delete effect axiom for move-right.
• ¬at-L1(0) ∨ at-L1(0) ∨ at-L1(1): positive frame axiom for at-L1. The axiom says that, if at-L1 is true at 0, and

the delete effect of move-right does not occur, then at-L1 is still true at 1. Note that this cannot hold (since the
delete effect occurs if at-L1 is true), and the clause can be skipped.

• ¬at-L2(0) ∨ at-L2(1): positive frame axiom for at-L2.
• at-L1(0) ∨ ¬at-L1(1): negative frame axiom for at-L1.
• at-L2(0) ∨ at-L1(0) ∨ ¬at-L2(1): negative frame axiom for at-L2.

To check whether at-L1 is known in s, a satisfiability test is made on φ(act) ∧ ¬at-L1(1). The result is “sat”: a
satisfying assignment σ is, e.g., that corresponding to I = {at-L2}, i.e., σ(at-L2(0)) = TRUE, σ(at-L1(0)) = FALSE,
σ(at-L2(1)) = TRUE, σ(at-L1(1)) = FALSE. Checking whether at-L2 is known in s succeeds, however: φ(act) ∧
¬at-L2(1) is unsatisfiable. Inserting ¬at-L2(1) into the positive frame axiom for at-L2 we get ¬at-L2(0), inserting
¬at-L2(1) into the effect axiom for move-right we get ¬at-L1(0), in consequence the initial state clause at-L1(0) ∨
at-L2(0) becomes empty. Similarly, one can find out that at-L1 is negatively known in s.

The observation made in Proposition 3 gets us around enumerating all possible initial world states for computing
whether a given proposition is known upon execution of act or not. While we do need to perform worst-case exponen-
tial reasoning about the formula φ(act), our empirical results show that this reasoning is feasible, as the interactions
between action effects in practice (at least as reflected by our benchmark domains) are not overly complex.

Note that one can apply several significant reductions to the number of SAT calls made, and the size of the CNF
formulas looked at. In our current implementation, these are:

• Simplify φ(act) by inserting the values of propositions at times i < n which are known to be true or false—these
values are stored (for the respective belief states) along the path corresponding to act. In effect, φ(act) only
contains variables whose value is unknown at the respective points of act’s execution.

• Make SAT calls only on propositions p such that p may change its truth value due to a conditional effect e

that possibly occurs: all of e’s condition propositions are either known or unknown, and at least one of them is
unknown. (For the initial belief state, SAT calls can be avoided for propositions occurring in unary clauses.)

Once the known propositions in s are computed, we can easily check if act is a plan: this is the case iff all goal
propositions are known in s; similarly for action preconditions, see below. Note that one could check entailment of
the goal (of an action precondition) with a single SAT call by negating the goal (the precondition), and conjoining
the resulting disjunction with φ(plan). Decomposing this test into several tests for the individual propositions has the
advantage that the knowledge about the propositions can be re-used for other tests.

The actions that are applicable to s, and that are used to generate the successor states, are those actions whose
preconditions are all known in s, and whose effects cannot be self-contradictory in s. To make sure of the latter, we
(potentially) do some additional SAT tests. Two effects e and e′ are potentially self-contradictory if add(e)∩del(e′) �=
∅ or add(e′) ∩ del(e) �= ∅. For all such pairs e and e′ of effects of each action whose preconditions are known in s, we
check whether e and e′ occur together in s for a possible initial world state. The check is made by a SAT call on the
formula φ(act) ∧ ∧

c∈con(e)∪con(e′) c(n). If the result is “sat” then e and e′ can occur together and we skip the action.
Of course, one can avoid unnecessary SAT calls when the known and negatively known propositions in s already
imply that a pair e and e′ of effects will or will not occur together.

4. Heuristic function

In classical planning, a successful idea has been to guide (forward, e.g.) search by heuristic functions based on a
relaxation of the planning task, where the relaxation is to assume that all delete lists are empty. In every world state w

during the search, the relaxed task starting from w is solved, and the length of the relaxed plan is taken to be the
heuristic value to w. We now extend this idea to the conformant setting. This extension forms the technically most
challenging part of our work, so we discuss it in detail.
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This section is structured as follows. In Section 4.1, we discuss the advantages and drawbacks of possible options
for an extended relaxation, choosing one of them for use in our system. In Section 4.2, we adapt the algorithm used
by FF to solve relaxed tasks, and we prove that the adapted algorithm is sound and complete relative to the (chosen)
extended relaxation. In Section 4.3, we explain two optimizations of the algorithm that we use in our implementation,
in Section 4.4 we discuss two variations of the algorithm that we have also implemented.

4.1. Conformant relaxations

In the design of a heuristic function, two main decisions have to be made. The first of these is whether the heuristic
should be admissible.5 Admissible heuristics can be used to find optimal solutions using A*. In our work, as in the
original FF system we sacrifice admissibility, and with that optimality, for runtime performance (see also below).

The second design decision to be taken in the creation of a heuristic function is a trade-off between the informa-
tivity and the computational efficiency of that function.6 The more time we invest into reasoning inside the heuristic
function, the more informative will that function be; at the extreme ends we have an exact heuristic function solving
the entire problem to obtain its return value, and a trivial heuristic function returning always the same value.

In pure STRIPS planning, if we ignore the delete lists then the complexity of deciding plan existence goes down
from PSPACE to P [11]. The complexity of deciding bounded plan existence is still NP-hard without delete lists, so it
would be impractical to compute a provably shortest relaxed plan, and with that an admissible heuristic function. But
we can use this relaxation as the basis for a heuristic function, by computing a relaxed plan in polynomial time, and
taking its length as the heuristic value—this is done in FF. In STRIPS, not much more variation seems to be possible
in this particular trade-off between informativity and computational efficiency: it is unclear how to ignore only some
of the delete lists without falling back into the general, PSPACE-hard, planning case.

In the conformant setting we consider here, the design decisions possible in defining the relaxation, and thereby
the heuristic function, are much more interesting and manifold. First of all, as a simple consequence of Proposition 1,
deciding plan existence is still co-NP-hard without delete lists, and indeed without any actions. If one wants to obtain
a heuristic function computable in worst-case polynomial time, then there is no way around relaxing (not only the
actions but also) the initial state formula. On the other hand, in our approach to belief space search, as described in
the previous section, several SAT calls may be made for every single generated search state. These SAT calls are
worst-case exponential but seem to be feasible in practice, and a priori there is no reason why the same successful
use of SAT solvers as part of the computation should not be possible in the heuristic function. It is important to note
here that computing optimal relaxed plans, while also “only” NP-complete in the classical setting, seems practically
infeasible; at least no technique for doing it reasonably efficiently has yet been developed (published). So we will
stick, in the conformant setting, to not trying to compute optimal relaxed plans.

To avoid the computational complexity arising from destructive interactions between action effects, we also defi-
nitely want to stick to ignoring the delete lists in our conformant relaxation. The design decision to be taken is what
other simplifications/relaxations we make to the conformant task description.

First, we observe that deciding conformant plan existence with empty delete lists can be done by a single CNF
satisfiability test if one uses the generous action execution semantics. Recall from Section 2 that, under the generous
execution semantics, non-applicable actions do not affect the world state, rather than resulting in an undefined state.

Theorem 1 (A+-complexity). Given a conformant task (A,I,G) where the delete lists of all effects are empty. De-
ciding whether there exists a generous plan for (A,I,G) is co-NP-complete.

Proof sketch. Hardness follows directly from Proposition 1. Membership can be shown by constructing a CNF
formula that encodes the semantics of executing all actions in parallel m times, where m is the number of dis-
tinct conditional effects in the task. The formula implies the goals (at time m) iff there exists a generous plan for
(A,I,G). �

The CNF formula construction in the proof does not work if one assumes a non-generous execution semantics of
actions, because in this case one cannot easily model a “parallel” execution of all actions. Intuitively, the generous

5 A heuristic function is called admissible if it always underestimates the distance to the nearest solution state.
6 Informativity is an informal concept meaning the quality of the guidance information that a heuristic provides.
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execution semantics gives us the possibility to “select”, for every initial world state, appropriate subsets from the
parallel action steps. It is an open question what the complexity of deciding plan existence is in the absence of delete
lists with a non-generous execution semantics. We remark that Theorem 8(iv) of [12] describes a slightly more general
case (e.g., delete lists are allowed) for which the existence of a plan of bounded size is DP -complete. This implies that
our problem is in DP (the class of all languages that can be defined as the intersection between an NP and a co-NP
language).

Theorem 1 suggests to relax conformant planning tasks (only) by ignoring the delete lists, and then use a single SAT
call per search state to compute a relaxed plan.7 We did not try this out in an implementation because it does not appear
very promising, or at least poses a number of serious difficulties. First of all, the size of the formula to be considered
is a square function in the number of (ground) action effects and will become very large when there are many actions.
It seems likely that SAT reasoning about such a large formula for every search state will take a lot of time. One might
be able to ameliorate the difficulty by not doing a single SAT check asking for goal fulfillment after m parallel action
steps, but instead looking at a sequence of CNF formulas with 1,2, . . . steps, and stopping when the goal first becomes
implied (or when a termination criterion is met). Still even with this approach the CNF formulas reasoned about will
be large. Another serious difficulty arises from the fact that we are looking for a heuristic estimate of the number
of actions needed to achieve the goal. The experience from classical planning tells us that the number of parallel
(relaxed) action steps is typically a very bad estimate for this number [13]. So, say we have found a CNF for k parallel
action steps so that the goals are implied. That is, we have proved by an unsatisfiability result that this CNF implies
truth of the goals after the kth step. So how do we actually extract a relaxed plan? What we need to find is a (minimal,
ideally) subset of the actions (of the actions at the time steps) that still implies goal fulfillment. This corresponds to a
(minimal, ideally), unsatisfiable subset of our CNF. There are techniques that extract unsatisfiable subsets of a CNF
from Davis-Putnam style refutation proofs [14], by keeping track of the clauses involved in the resolution sequence
corresponding to that proof. It seems questionable if such techniques can be made to work reliably and efficiently
enough for use in the context of the heuristic computations we consider here.8

In our first version of Conformant-FF, we designed and implemented a heuristic function from the other end of the
possible spectrum, with a worst-case polynomial computation. The relaxation that we made on top of ignoring the
delete lists was to consider only a 2-CNF-projection of the relevant CNF formulas. That is, we considered a sequence
of CNF formulas as above with 1,2, . . . parallel action applications, selected only two literals out of each clause, and
stopped—with success—when the 2-projected CNF implied the goals, or—with failure—when a simple termination
criterion told us that no success would be possible in future iterations.9 In the case of success, from the reasoning
done to prove the implication in the 2-CNF setting a relaxed plan could easily be extracted.

The worst-case polynomial computation was made possible because the whole CNF-semantics of the task, in-
cluding the initial state formula, was 2-projected. However, it turned out that 2-projection of the initial state formula
yielded very uninformative heuristic values in a lot of cases. In many examples, the uncertainty about the initial state
lies in that the values of a set of multiple-valued variables—the positions/internal states of a set of objects—are un-
known. Modeling such uncertainty with boolean variables, for a multiple-valued variable with k values one gets (a set
of binary clauses and) a clause with k literals in the initial state formula. For values of k larger than 2, ignoring all
but 2 of the literals in this clause quickly results in very bad approximations to the semantics of the multiple-valued
variable.

In our current version of Conformant-FF—i.e. in the version reported about in this paper—we use a relaxation
in between the above two alternatives. We do not do any relaxations to the initial state formula, thus paying the
price of full SAT checks against that formula in order to have the benefit of taking full account of the information
it contains. We do, however, relax the actions in that we ignore the delete lists of their effects, and we also re-use

7 If the SAT call comes to the conclusion that there is no relaxed plan then it follows that there is no real plan from the search state either, and the
state can be skipped.

8 At the very least, significant implementation challenges would have to be overcome. Also, there would probably be ambiguities in the extraction
of the unsatisfiable subsets of the CNFs, i.e., decisions that can be taken arbitrarily and that significantly affect the size of the found subset. Such
ambiguities would directly translate into ambiguities—arbitrary significant variations—in the returned heuristic values, which are likely to affect
search efficiency.

9 The termination criterion was the same as we currently use, see below. The implementation of the process made extensive use of information
about propositions already known to be true at certain time steps, similarly to our current implementation, see below.
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the 2-projection that we previously used for the clauses related to action effects. At a time step t , for an action a

that is (known to be) applicable at t , for an effect e ∈ E(a) with condition con(e) = {c1, . . . , ck}, for p ∈ add(e),
the valid implication is c1(t) ∧ · · · ∧ ck(t) → p(t + 1). Our 2-projection selects only one of the conditions ci for
inclusion in the implication clause, i.e. we get an implication of the form ci(t) → p(t + 1) (ci is selected arbitrarily
as the first condition proposition in our internal numbering). Formally, this simplification comes down to a relaxation
that ignores, for each action effect, the effect’s delete list as well as all but one of the propositions in the effect’s
condition. Given a set A of actions, we denote by |+1 any function from A into the set of all actions, such that |+1 maps
each action a to the same action but with empty delete lists and with all but one condition proposition of each effect
removed. We call |+1 a relaxation function for A. By A|+1 we denote the action set resulting from applying |+1 to each
action in A. For an action sequence act, by act|+1 we denote the sequence of the images of the actions under |+1 . For a
conformant planning task (A,I,G), we call (A|+1 ,I,G) a relaxation of (A,I,G). If act|+1 is a plan for (A|+1 ,I,G),
then act is called a relaxed plan for (A,I,G).

The algorithms that we use to solve relaxed tasks are the topic of the next subsection. Put briefly, the advantage of
ignoring all but one effect condition (on top of ignoring all delete effects) is that, with this relaxation, the dependencies
that the actions induce between propositions (at time steps) come down to binary implications, where the set of all
these implications forms a tree. The reasoning needed to find out if a proposition p is known at t can be done by
a simple backward chaining over the tree edges that end in p(t), followed by a SAT check to see if the initial state
formula implies the disjunction of the reachable tree leafs.

Obviously, our relaxation induces an over-approximation of reachability. If act is a plan for a task (A,I,G) then,
for any relaxation function |+1 for A, act|+1 is a plan for (A|+1 ,I,G). Note that this implies that, if there is no plan for
a relaxation of a task, then there is no plan for the real task either. So if our reasoning about relaxed tasks is complete
relative to the relaxation, and figures out that there is no relaxed plan to a search state, then that state can be safely
excluded from the search.

4.2. Solving relaxed tasks

Our algorithms for solving relaxed conformant tasks are a natural extension to the algorithms used in FF [6], and
are best presented and understood this way. We now first outline FF’s computations, then we present their extension to
our conformant setting/relaxation. We prove that the overall algorithm is sound and complete relative to the relaxation.

FF’s method of solving relaxed tasks is a specialized version of the Graphplan algorithm [15]. Starting from a world
state w, build a relaxed planning graph as a sequence of alternating proposition layers P(t) and action layers A(t),
where P(0) is the same as w, A(t) is the set of all actions whose preconditions are contained in P(t), and P(t + 1)

is P(t) plus the add effects (with fulfilled conditions) of the actions in A(t). From a proposition layer P(m) in which
the goals are contained one can find a relaxed plan by a simple backchaining loop. One selects achieving actions at
layers t < m for all goals in P(m), one inserts those actions’ preconditions and the respective effect conditions as
new subgoals (which by construction are at layers below the respective actions), then one steps backwards and selects
achievers for the subgoals. The heuristic value h(w) for w then is the number of actions selected in backchaining—the
length of the relaxed plan. If there is no relaxed plan then the planning graph will reach a fix point P(t) = P(t + 1)

without reaching the goals; h(w) is then set to ∞ (excluding the state from the search space).
In the conformant setting, we take the sets P(t) and A(t) to contain the propositions that are known to hold at t and

the actions that are known to be applicable at t , respectively. Additionally we introduce sets uP (t) of propositions that
are unknown at step t , i.e. propositions that are true when starting from some initial world states, but that are false when
starting from others. We introduce machinery that decides if a proposition p is known at t . The machinery maintains a
set Imp of implications between propositions at adjacent time steps. A variation of the machinery determines, during
relaxed plan extraction, what actions must be inserted into the relaxed plan in order to make p known at t , if that is
required.

The process is additionally complicated by the fact that, in difference to the classical setting where all relevant
information is contained in the world state w in question, in our search space representation only partial knowledge
about the belief state is available. All we have in memory are the sets of known and unknown propositions in the
belief state. These do not tell us anything about any constraints between the unknown propositions that might follow
from the actions we executed on the path to the state. If we ignore such constraints arising from the past, then the
relaxed planning algorithm becomes incomplete. Consider, for example, a goal proposition g that can be made true
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by an action ap , with a conditional effect that achieves g given we have p (whose value is initially unknown). If we
are in the belief state s where only ap was applied, then there is a constraint ¬p ∨ g in our unknown propositions.
Ignoring this constraint, a relaxed plan treats s exactly like the initial state, and (potentially) needs to make use of ap

although that is unnecessary in s. For one thing, this makes the resulting heuristic function lose distinctions between
states, since different belief states are treated equally. Even more importantly, a predecessor action might no longer
be applicable, which may make us lose the ability to solve the problem, even in its relaxed form (example: ap has as
precondition, and deletes, some proposition that cannot be re-achieved).

Due to these observations, we need to let the relaxed planning algorithm reason about what constraints follow from
the actions in act. In our approach, in a similar fashion to how we compute known propositions, this reasoning is
done by keeping track of the conditional effects that may occur along the execution of act, depending on the initial
world state. The reasoning is based on the same set Imp of (timed) implications that we maintain to determine known
propositions at later layers of the relaxed planning graph. Thus the reasoning is easiest understood as additional relaxed
planning graph layers referring to the past. The layers are indexed from −n, . . . ,−1, corresponding to the actions in
act, n being the length of act. See the conformant relaxed planning graph (CRPG) building algorithm in Fig. 2.

We first explain Fig. 2, then we consider an example, then we state that the CRPG algorithm is complete, then we
show how one can extract a relaxed plan from a successfully built CRPG.

procedure build-CRPG(act,A,I,G, |+1 ),
returns a Bool saying if there is a relaxed plan for the belief state

given by act = 〈a−n, . . . , a−1〉, and
builds data structures from which a relaxed plan can be extracted

Imp := ∅, P(−n) := {p | p is known in I}, uP (−n) := {p | p is unknown in I}
for t := −n . . . − 1 do

A(t) := {at |+1 ,NOOP}
build-timestep(t,A(t))

endfor
t := 0
while G �⊆ P(t) do

A(t) := {a|+1 | a ∈ A, pre(a) ⊆ P(t)} ∪ {NOOP}
build-timestep(t,A(t))

if P(t + 1) = P(t) and
uP (t + 1) = uP (t) and
∀p ∈ uP (t + 1) : Impleafs(p(t + 1)) = Impleafs(p(t)) then
return FALSE

endif
t := t + 1

endwhile
m := t , return TRUE

procedure build-timestep(t,A),
builds P(t + 1), uP (t + 1), and the implication edges from t to t + 1,
as induced by the action set A

for all effects e of an action a ∈ A do
if con(e) ∈ P(t) then P(t + 1) := P(t + 1) ∪ add(e) endif
if con(e) ∈ uP (t) then

uP (t + 1) := uP (t + 1) ∪ add(e)

Imp := Imp ∪ {(con(e)(t),p(t + 1)) | p ∈ add(e)}
endif

endfor
for all p ∈ uP (t + 1) \ P(t + 1) do

if I → ∨
l∈Impleafs(p(t+1)) l then P(t + 1) := P(t + 1) ∪ {p} endif

endfor
uP (t + 1) \ = P(t + 1)

Fig. 2. Building a conformant relaxed planning graph (CRPG).
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Let us just read Fig. 2 from top to bottom. The CRPG is initialized by setting the implication set Imp to ∅, and
setting the initial proposition layer P(−n) and uP (−n) to the information provided by I (we have this information
from our reasoning about known propositions). The for loop then builds the time steps −n, . . . ,−1 with action layers
corresponding to the actions in act, relaxed with |+1 . We additionally introduce a NOOP action, to simplify the pre-
sentation. The NOOP simply transports all propositions from layer t to layer t + 1. More formally, pre(NOOP) = ∅
and

E(NOOP) = {
({p}, {p},∅) | p is a proposition in the task at hand

}
.

The while loop in Fig. 2 builds time steps t from 0 on until a proposition layer m is reached that contains the goals G.
The actions in each layer t are those whose preconditions are reached at t (plus the NOOP), relaxed with |+1 . The
algorithm terminates with return value FALSE if a termination criterion is met. We focus on the termination criterion
further below. Right now let us consider how the time steps are built. The first for loop proceeds over all effects of the
actions in the given set. Effects whose condition is known to hold at t yield (potentially) new known propositions at
t + 1. Effects whose condition can hold depending on the initial world state yield (potentially) new such propositions
at t + 1, together with the appropriate implication edges in Imp. Note that, to ease the presentation, we assume here
that there are no unconditional effects, i.e. no effects e for which con(e) = ∅. This is no restriction: for such effects,
one can simply introduce a new proposition p that is always true, and set con(e) := {p}. With this we can assume that
all effect conditions (of the relaxed actions) contain exactly one proposition. To emphasize this, in the notation we use
the set con(e) as if it was a single proposition. The second for loop of the build-timestep procedure goes over all p that
may be true at t + 1, but that were not yet proved to always be true at t + 1. It is checked if the initial state formula
implies the disjunction of the leafs of the Imp tree that are reachable from p(t + 1): Impleafs(p(t ′)), for any t ′, is
defined as

Impleafs(p(t ′)) := {
l | Exists a path in Imp from l(−n) to p(t ′)

}
.

In our implementation, such leaf sets are computed by a simple backchaining loop over the edges ending in p(t ′). The
implication I → ∨

l∈Impleafs(p(t+1)) l is checked by a call to the SAT solver, and if the implication holds, p is inserted
into the known propositions at t + 1. As a last step, the procedure removes from the set of unknown propositions,
i.e., from those propositions for which it has been shown that there is at least one initial world state that makes them
become true, all p that were proved to be always true (i.e., known) at t + 1.

To illustrate the CRPG algorithm, let us reconsider the example from Section 3.

Example 2. A robot is initially at one out of two locations, modeled as I = {at-L1 ∨ at-L2,¬at-L1 ∨ ¬at-L2}.
Our goal is to be at L2, and we have a move-right action that has an empty precondition, and the conditional ef-
fect ({at-L1}, {at-L2}, {at-L1}). The CRPG to the initial state—i.e. the CRPG to the empty sequence act = 〈〉—is
computed as follows. P(0) is set to ∅, uP (0) is set to {at-L1,at-L2}. In the first iteration, t = 0, of the while loop,
build-timestep is called with A(0) = {move-right,NOOP}. In the first for loop of build-timestep, the move-right ac-
tion yields the implication edge (at-L1(0),at-L2(1)), while the NOOP yields the edges (at-L1(0),at-L1(1)) and
(at-L2(0),at-L2(1)). In the second for loop, we find that Impleafs(at-L1(1)) = {at-L1(0)} which is not implied by I;
however, Impleafs(at-L2(1)) = {at-L1(0),at-L2(0)} whose disjunction is obviously implied by I . Consequently,
at-L2 is moved into P(1) and we end up with P(1) = {at-L2}, uP (1) = {at-L1}. So in the next iteration, t = 1,
of the while loop, the algorithm terminates with success and returns TRUE. Now, say we call the CRPG algorithm on
the belief state given by the action sequence act = 〈move-right〉. In this case the whole above process is moved one
step “to the left”. We obtain P(−1) = ∅, and uP (−1) = {at-L1,at-L2}. A(−1) is set to {move-right,NOOP}, which
leads to P(0) = {at-L2} and uP (0) = {at-L1} just like above. As we will explain below, actions for inclusion in the
relaxed plan to the state are only selected for goals at layers t > 0, so with the goal at-L2 being contained in P(0) our
relaxed plan will be empty. (In difference to the initial state, where at-L2 is first contained in P(1) and will lead to
the selection of move-right into the relaxed plan.)

The reasoning described above is adequate for our relaxation (more precisely, Lemma 1 in Appendix A holds)
because Imp captures all dependencies introduced by the relaxed actions between propositions at time steps. Note
that the NOOP action introduces implication edges of the form (p(t),p(t + 1)) saying that a proposition p will still
be true at t + 1 if it was true at t (remember that there are no delete lists). The termination criterion of the CRPG
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computation asks if, from time step t to time step t + 1, neither the known propositions nor the unknown propositions
nor the reachable Imp tree leafs of the latter propositions have changed. It is relatively easy to see that, in this case,
the same would hold true at all future time steps t ′ > t , implying that the goals will never be reached.

More formally, the following holds.

Theorem 2 (CRPG-completeness). Given a conformant task (A,I,G), an executable action sequence act, and a re-
laxation function |+1 for A. If build-CRPG(act,A,I,G, |+1 ) returns FALSE then there is no relaxed plan for (A,I,G)

that starts with the sequence act.

Proof sketch. The proof is based on two observations. First, the propositions in the sets P(t) (respectively uP (t)) are
exactly those propositions that are known (respectively unknown) after executing all the actions in the action layers
up to A(t − 1). Second, if the CRPG algorithm returns FALSE in some iteration then the termination criterion would
also hold in all future iterations. With the first observation, if there is an m-step relaxed plan for (A,I,G) that starts
with act, then the goals are contained in P(m). With the second observation, if the CRPG algorithm returns FALSE
then no such layer m exists. �

If the CRPG building algorithm succeeds in reaching the goals, then a relaxed plan is extracted and the length
of that relaxed plan is used to generate the heuristic value of the belief state—see below. Relaxed plan extraction
proceeds as specified in Fig. 3.

We explain Fig. 3, then we reconsider the example, then we state that the CRPG algorithm is sound, then we explain
how the heuristic value to the state is generated.

The process makes use of proposition sets G(1), . . . ,G(m), which are used to store the goals and sub-goals arising
at layers 1 � t � m during relaxed plan extraction. The sub-goal procedure simply inserts all given propositions as
sub-goals at their first layer of appearance in the CRPG. The sub-goals are considered layer-by-layer, starting from

procedure extract-CRPlan(CRPG(act,A,I,G, |+1 ),G),
selects actions from A(0), . . . ,A(m − 1) that
form a plan for (A|+1 ,I,G) when appended to act|+1

sub-goal(G)

for t := m, . . . ,1 do
for all g ∈ G(t) do

if ∃a ∈ A(t − 1), e ∈ E(a), con(e) ∈ P(t − 1), g ∈ add(e) then
select one such a /* and e */ at t − 1
sub-goal(pre(a) ∪ con(e))

else
let L be a minimal subset of Impleafs(g(t)) s.t. I → ∨

l∈L l

for all i � 0, actions a ∈ A(i) \ {NOOP}, and effects e ∈ E(a) s.t.
e is responsible for an edge in a path from l(−n), l ∈ L, to g(t) do
select a at i

sub-goal(pre(a))

endfor
endif

endfor
endfor

procedure sub-goal(P ),
inserts the propositions in P as sub-goals
at the layers of their first appearance in the CRPG

for all p ∈ P do
let t0 be the smallest t s.t. p ∈ P(t)

if t0 � 1 then G(t0) := G(t0) ∪ {p} endif
endfor

Fig. 3. Extracting a conformant relaxed plan.
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the top layer m going downwards to layer 1. For each sub-goal g at layer t , supporting actions are selected into the
relaxed plan. If there is an action a at layer t − 1 that guarantees to always achieve g, then a is selected at t − 1.
Otherwise, a minimal subset L of Impleafs(g(t)) is determined such that I → ∨

l∈L l. This is done by starting from
L := Impleafs(g(t)) and, iteratively, removing propositions p from L if

∨
p �=l∈L l is still implied by I , until no such p

is left in L. Then all actions are selected, at the respective times, that are responsible for the implication paths from L

at −n to g at t . The motivation behind the use of a minimal implied subset L is that we want to avoid the inclusion of
superfluous actions into the relaxed plan. Such superfluous actions lead to an unnecessary over-estimation of the real
goal distance, and can seriously affect the informativity of the resulting heuristic function.

Selection of actions is to be understood as a set union operation, i.e. if an action a is selected that was selected at the
same time before, then nothing happens. Note that, in the first case of the if statement, when an action guarantees to
always achieve g, then that action cannot be the NOOP because otherwise g would be contained in P(t − 1) already.

We reconsider the illustrative example above.

Example 3. A robot is initially at one out of two locations, I = {at-L1 ∨ at-L2,¬at-L1 ∨ ¬at-L2}. The goal is to be
at L2, and the move-right action has an empty precondition, and the conditional effect ({at-L1}, {at-L2}, {at-L1}). To
the initial state, we obtain the CRPG P(0) = ∅, uP (0) = {at-L1,at-L2}, P(1) = {at-L2}, uP (1) = {at-L1}, and Imp =
{(at-L1(0),at-L2(1)), (at-L1(0),at-L1(1)), (at-L2(0),at-L2(1))}. Relaxed plan extraction starts from layer m = 1,
with G(1) = {at-L2}. There is no action that guarantees achievement of at-L2, and we get L = Impleafs(at-L2(1)) =
{at-L1(0),at-L2(0)}. The edges from L at 0 to at-L2 at 1 are (at-L1(0),at-L2(1)) and (at-L2(0),at-L2(1)). The
former edge is induced by move-right at 0, the latter edge is induced by NOOP at 0. So (only) move-right at 0 is
selected into the relaxed plan. In the CRPG built to act = 〈move-right〉, as explained above we have at-L2 ∈ P(0). So
we get m = 0 and relaxed plan extraction does not perform any sub-goal achievement iterations, thus delivering an
empty relaxed plan.

It is relatively easy to see that the actions selected by extract-CRPlan form a relaxed plan for the belief state given
by act.

Theorem 3 (CRPG-soundness). Given a conformant task (A,I,G), an executable action sequence act, and a relax-
ation function |+1 for A, s.t. build-CRPG(act,A,I,G, |+1 ) returns TRUE. Let A(0)s, . . . ,A(m − 1)s be the actions
selected from A(0), . . . ,A(m − 1) by extract-CRPlan(CRPG(act,A,I,G, |+1 ),G). Then act|+1 concatenated with
A(0)s, . . . ,A(m − 1)s in an arbitrary linearization is a plan for (A|+1 ,I,G).

Proof sketch. It can be shown by induction over t that, for any proposition g that is made a sub-goal at time t (0 < t �
m) during the execution of extract-CRPlan, g is known after executing the actions in act|+1 and A(0)s, . . . ,A(t − 1)s .
This shows the claim. The main argument in the induction is that, if actions were selected for all effects that were
responsible for an edge in a path from l(−n), l ∈ L, to g(t), where I → ∨

l∈L l, then in every I ∈ 2I one l ∈ L is true,
and the actions on the path from l(−n) to g(t) make g true at t . �

Theorems 2 and 3 together imply that build-CRPG(act,A,I,G, |+1 ) returns TRUE if and only if there is a relaxed
plan for (A,I,G) that starts with act.

If the CRPG returns FALSE, we set our heuristic value h to ∞: the state is proved to be a dead end, i.e. a state
from which the goals can’t be reached (this holds because, as pointed out above, |+1 induces an over-approximation
of reachability). The state will be excluded from the search space. If the CRPG succeeds in reaching the goals, let h

be the number of actions selected by extract-CRPlan(CRPG(act,A,I,G, |+1 ),G), i.e., the number of actions in the
relaxed plan to the belief state. As in the classical setting of FF, our intention is to use h as the heuristic value for the
state. There is, however, one subtlety here in the conformant setting. We relax the semantics of not only the actions
in the CRPG layers at times 0, . . . ,m, but also of the actions at times −n, . . . ,−1, i.e., of the actions on the path
to the state. Because of this, the CRPG is an over-approximation not only of what we will be able to achieve in the
future, but also of what we already achieved in the past. In consequence, it may be that we obtain an empty relaxed
plan—the goals are all reached at P(0) already—although the goals are not known in the state. So our heuristic value
may be 0 in non-goal states. Since normally a heuristic value of 0 is taken to indicate goal states, we add 1 to h in case
the goals are not known after act (which we know about from our reasoning about the search states). Note that the
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phenomenon—over-approximation of what was achieved in the past—may seriously affect the informativity of the
heuristic function in regions of the search space where many actions were applied already. We explain below, amongst
other things, a variation of the heuristic function with which we have tried to overcome this problem.

Altogether, the above processes define a heuristic h as a function from belief states into N0 ∪ {∞}, i.e. into the
natural numbers with 0 and {∞}. States s with h(s) = 0 are goal states, states with h(s) = ∞ are proved unsolvable
and can be skipped.

4.3. Optimizations

One can spare some time in the creation of the CRPG, and obtain a somewhat more informative heuristic function,
by re-using the knowledge stored along the search path to the state, i.e., along the action sequence act, when building
the CRPG layers −n, . . . ,−1. Instead of computing the proposition layers P(−n),uP (−n), . . . ,P (−1), uP (−1) by
the same machinery as used for the higher CRPG layers, one can simply set these proposition layers to the values
stored in the search states along act, as were computed during the search. The Imp edges can be inserted accordingly.
This obviously saves some time, and also it ameliorates the problem outlined above, over-estimation of the past
achievements. Note that, however, the reasoning done on the Imp tree still over-estimates the semantics of the actions
in act. One of the variations described below avoids this problem altogether, at the cost of more expensive SAT
reasoning.

There is no need to decide off-line, for each effect, exactly which of the condition propositions one ignores. Indeed,
in some of the computations made when building the CRPG, it is not necessary to ignore all but one of the effect
conditions. One can avoid applying effects that are known to not occur, and one can avoid ignoring the known aspects
of an effect condition. In our implementation, say we build a time step t and, during the first for loop of build-timestep,
consider an action effect e. We look at the original form of e, with the whole effect condition. If con(e) ⊆ P(t),
the effect condition is known to hold and all p ∈ add(e) are inserted into P(t + 1). If con(e) �⊆ P(t) ∪ uP (t), the
effect is known to not occur, and we skip it. If the above two cases do not hold, i.e. we have con(e) �⊆ P(t) and
con(e) ⊆ P(t)∪uP (t), then the effect possibly occurs. We then (arbitrarily) select one c ∈ con(e) such that c ∈ uP (t),
and insert all p ∈ add(e) into uP (t + 1), with edges (c(t),p(t + 1)).

4.4. Variations

Throughout the rest of the article, we refer to the h values delivered by the above machinery, including the op-
timizations, as the initial-formula heuristic function, denoted with hI to indicate that it is obtained by SAT checks
against I . We also call hI the standard heuristic function because we use it as the default in our implemented system.

In the first variation of the heuristic, called the incomplete heuristic function and denoted as hinc, we do not do any
SAT calls to check the implications I → ∨

l∈L l. We only do a simple sufficient test. The motivating observation is
that, often, in our examples, when I implied

∨
l∈Impleafs(p(t)) l, the reason was simply a clause in I that was a subset

of Impleafs(p(t)). (Note that this is also the case for Impleafs(at-L2(1)) = {at-L1(0),at-L2(0)} in our illustrative
example.) So our sufficient condition only sees if there is a clause C in I such that C ⊆ L. If that is not the case,
then we assume that the implication does not hold. This can, obviously, help to save runtime. Likewise obviously, the
resulting CRPG is no longer complete relative to the relaxation, i.e., the CRPG can return FALSE even if there is a
relaxed plan. So, if the CRPG cannot reach the goals, to preserve the overall completeness of the search algorithm,
hinc returns some large integer value instead of ∞.

Our second variation of hI is called the state-formula heuristic function, and denoted with hφ(act). Recall that hI

relaxes the semantics of all actions including those in act, and checks Imp leaf disjunctions for implication by I .
In contrast, the relaxed planning algorithm behind hφ(act) only relaxes the semantics of the actions in the “future”
layers of the CRPG, t � 0, and checks Imp leaf disjunctions for implication by the formula φ(act) that encodes
the semantics of the belief state given by act. Indeed, the CRPG now only contains layers t with t � 0. Precisely,
the variation is obtained from Fig. 2 as follows. Skip the first for loop. Set P(0)/uP (0) to the known/unknown
propositions after act, and start with the while loop. Replace, in build-timestep, the condition I → ∨

l∈Impleafs(p(t+1)) l

with φ(act) → ∨
l∈Impleafs(p(t+1)) l(n). Otherwise, the algorithm remains unchanged. In the relaxed plan extraction

algorithm, Fig. 3, the only change made is that now L is defined to be a minimal subset of Impleafs(g(t)) such that
φ(act), rather than I , implies

∨
l.
l∈L
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The hφ(act) approach has the advantage that reasoning about the past is precise, with no over-estimation of what
was achieved by act. In particular, if the returned relaxed plan is empty, then this means that s is a goal state. The
disadvantage of hφ(act) is that checking implication against the formulas φ(act) is typically much more costly than
checking implication against I . The latter formula is the same for all search states. The former formula grows with
the length of act, which are up to a few hundred steps in some of our examples. Note that the checks for φ(act) →∨

l∈Impleafs(p(t+1)) l(n) need to be done every time when the CRPG has to test if an unknown proposition becomes
known at a layer, and every time the relaxed plan selects such a proposition as a sub-goal. (In the latter case, even
several implication checks are needed in order to identify a minimal implied subset.)

We remark that, in our experiments, often hφ(act) and hinc yielded performance very similar to that of hI . Details
are in Section 6.

5. Repeated states

Forward search spaces in planning are, generally, graphs, i.e., the same search states can be reached via different
search paths. In many examples, this happens so frequently that checking for repeated search states becomes crucial
for performance. (For example, repeated search states occur when several actions are independent of each other and
can be applied in any order.)

We avoid repeated search states by a hash table technique combined with a belief state equivalence test (or a belief
state domination test, see below). When we perform search, we check via a hash table lookup whether the new belief
state is equivalent to (dominated by) some previous belief state in the same hash entry. If so, the new belief state is
pruned. The hash value of a state is a function of the union of the propositions that are known or unknown in the state,
which ensures that equivalent belief states end up in the same hash entry (state dominations may be missed due to
different hash values).

In the classical setting, testing equality of world states is straightforward and easy: the states are proposition sets. In
the conformant setting, one must test if two belief states, i.e., two sets of world states, are equal. We did not find a way
to do this based on our sparse representation of belief states. Instead, we test a stronger, sufficient but not necessary,
criterion which we call belief state equivalence. Let s and s′ be two belief states reached via the action sequences act
and act′, respectively. We say that s is equivalent to s′ iff for every possible initial world state I ∈ 2I the world state
upon execution of act in I is equal to the world state upon execution of act′ in I . Note that s and s′ may be equal
but not equivalent because the “ordering” of their world states—the correspondence to the initial world states—may
differ even though, as sets of world states, s and s′ are equal. However, if s and s′ are equivalent then obviously they
are also equal.

The equivalence relation can be tested based on satisfiability checks very similar to those that we do for computing
the known propositions. The key observation is the following. Two belief states s and s′ are equivalent iff for all
propositions p there is no I ∈ 2I starting from which p has different truth values in (the respective world states in)
s and s′. From left to right, if s and s′ are equivalent then obviously all p show the same behavior from all I . From
right to left, if there was an I that yielded different world states w and w′ in s and s′, then at least one p would have
different values in w and w′, in contradiction.

With the above, we can use the following satisfiability tests to decide about belief state equivalence. Let φI=(act)
and φI=(act′) be the formulas constructed for the action sequences act and act′, such that φI=(act) and φI=(act′)
share the same propositional variables for time 0 propositions but have different propositional variables for all times
greater than 0 (i.e., the conjunction of these formulas captures the semantics of executing act and act′ in the same
initial world state). For a proposition p, let p(act) and p(act′) denote p’s value (the respective propositional variable)
following act and act′, respectively. Then s is equivalent to s′ iff the formulas φI=(act) ∧ φI=(act′) ∧ p(act) ∧
¬p(act′) and φI=(act) ∧ φI=(act′) ∧ ¬p(act) ∧ p(act′) are unsatisfiable for all p.10

One can, of course, optimize the equivalence test by making use of the knowledge that was already computed
for s and s′. State equivalence can only hold if s and s′ agree on the sets of known/negatively known/unknown

10 Note that this set of SAT tests is basically a decomposed form of the non-CNF entailment test φI=(act) ∧ φI=(act′) ∧ ¬∧
p[(¬p(act) ∨

p(act′)) ∧ (p(act) ∨ ¬p(act′))], i.e., the test that asks if all p behave equivalently at the ends of act and act′. The decomposition consists of
putting ¬∧

p[(¬p(act) ∨ p(act′)) ∧ (p(act) ∨ ¬p(act′))] into negation normal form, and proving unsatisfiability for each individual member of
the resulting DNF.
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propositions—which, in our code, is equivalent to s and s′ falling into the same entry of the hash table. The SAT calls
need only be made for those p that are unknown (in both s and s′).

In many domains, including all but one of our experimental domains, a stronger form of repeated state pruning is
valid. In these domains it is the case that it can only be better to have more propositions true. More formally, we say
that a world state w dominates a world state w′ if w ⊇ w′. In many domains, if w dominates w′, then every action
sequence that solves the goal starting from w′ also solves the goal when starting from w. Then, if in a classical search
one has already seen w, and w′ comes up as a new state, w′ can be skipped without losing completeness. In the
conformant setting, we say that a belief state s dominates a belief state s′ if, for every initial world state I ∈ 2I , the
corresponding world state in s (the state after executing act) dominates the corresponding world state in s′ (the state
after executing act′). If it is always better to have more propositions true, and s dominates s′, then every conformant
plan from s′ is also a conformant plan from s. So if one has already seen s then s′ can be skipped. Belief state
domination can be tested by the exact same technique as explained for the equivalence test above, except that one
needs only a single SAT call per proposition, namely that for φI=(act) ∧ φI=(act′) ∧ ¬p(act) ∧ p(act′). It is easy
to see that s dominates s′ iff this formula is unsatisfiable for all p.11 Obviously, one can skip some SAT calls by
observing that s can only dominate s′ if its known (known or unknown) propositions are a superset of those known
(unknown) in s′. SAT calls need only be made for those p unknown in both s and s′.

In comparison to the equivalence test, the domination test has more pruning potential on top of being cheaper in
terms of the number of SAT calls made. But in our conformant planning setting, it is not generally the case that it can
only be better to have more propositions true. The reason lies in the conditional effects (in pure STRIPS, obviously
having more propositions true can only be better). If w ⊇ w′, and p ∈ w \ w′, then there may be a conditional effect
that has p among its conditions, and that deletes important propositions (that would not be deleted when executing
the same action in w′). However, there is a simple sufficient condition implying that the latter cannot happen. Say
a conditional effect e is of the form ({c},add, (del ∩ SREL) ⊆ {c}). Here SREL denotes the set of all propositions
that occur either in the goal or in some action precondition or in some effect condition. That is, e has only a single
condition c and a delete list whose only delete that may be needed is c. Then if e occurs from w but not from w′, the
only important proposition that may be deleted is an “additional” one, i.e. one in w \ w′. With this, it is easy to see
that, if all effects are of the form ({c},add, (del ∩ SREL) ⊆ {c}), then with w ⊇ w′ every plan from w′ is also a plan
from w. It is then valid to prune a belief state s′ if one has already seen a belief state s that dominates s′.

In our implementation of Conformant-FF, before search starts we (automatically) check if all conditional effects
have the form explained above. If so, the repeated states checking uses the stronger belief state domination test.
Otherwise, the full equivalence test is used. In all our experimental domains, with a single exception (the Omelette
domain, namely), all conditional effects have the necessary form, and the domination test is used.

In a few cases in our experiments we found that repeated states checking incurred a huge overhead, rendering
instances prohibitively hard that were otherwise—when turning the repeated states check off—easy to solve. This
phenomenon occurs in search spaces where no or only very few propositions become known/negatively known before
a plan is found. In such a situation, almost every visited state ends up in the same hash entry, since the hashing function
has no means to distinguish between them. Every time a new state is generated, it is compared to (almost) every state
visited before. So, in total, the number of comparisons made is a square function in the number of explored search
states. Every single comparison can involve several SAT calls, and so, clearly, checking for repeated states becomes
all-consuming.

To overcome the above deficiency, we have also implemented a weaker variant of repeated states checking, that
we call checking for stagnating states. There, a new search state s′ is only compared to the states s visited on the
path to s′. The total number of state comparisons is then bounded by the number of explored states multiplied with
the depth of the search tree (rather than the size of that tree, as before). The drawback is, clearly, a loss of pruning
potential.

The default setting in our implementation is a full repeated states check. Most of the time, at least as reflected
by our experiments, this behaves better than, or equally good as, the limited stagnation check. An alternative way to
overcome the potential weakness of full repeated states checking may be to use fast pre-checks to see if the SAT calls
can be avoided. We discuss this in the outlook in Section 9.

11 Similarly to above, this set of SAT calls is a decomposed version of the test φI=(act) ∧ φI=(act′) ∧ ¬∧
p[p(act) ∨ ¬p(act′)].
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6. Results

We implemented the techniques described in the previous sections in C. We evaluated the resulting system,
Conformant-FF, on a collection of benchmarks including traditional conformant benchmarks, and classical bench-
marks enriched with uncertainty. We compared Conformant-FF’s performance in detail to that of MBP and KACMBP.
We also ran some comparative tests with GPT and with POND.

In the next subsection, we give some implementation details of Conformant-FF, thereafter a subsection gives details
on our experimental setup. Then two subsections give our results for Conformant-FF, MBP, and KACMBP. The first
of these subsections considers the traditional conformant benchmarks, the second one considers the enriched classical
benchmarks. A final subsection describes the results we obtained with GPT and POND.

6.1. Implementation

We implemented the Conformant-FF system in C, starting from the FF code.12 Conformant-FF’s overall architec-
ture is identical to that of FF. An outline of the architecture is this:

(1) Do one trial of “enforced hill-climbing”: set the current search state s to the initial state; while s is not a goal
state:
(a) Starting from s, perform a breadth-first search for a world state s′ such that h(s′) < h(s). During search:

avoid repeated states; cut out states s′ with h(s′) = ∞; and expand only the successors of s′ generated by the
actions in H(s′).

(b) If no s′ with h(s′) < h(s) has been found then fail, else s := s′.
(2) If enforced hill-climbing failed, invoke complete best-first search, i.e., starting from the initial state expand all

world states in order of increasing h value, avoiding repeated states.

Here, h(s) denotes the heuristic value of a search state—the number of actions in a relaxed plan to the state.
H(s) denotes the so-called helpful actions, which are the only actions considered by the planner during hill-climbing.
The helpful actions to a search state are those that could be selected to start the relaxed plan. In the classical setting
these are those actions at the lowest level of the relaxed planning graph that add a subgoal (at this level). In the
conformant setting, H(s) are the actions at the lowest level of the relaxed planning graph that add a subgoal, or that
were selected for an implication path during relaxed plan extraction.

Conformant-FF uses a largely naive standard DPLL solver for the CNF reasoning. We also implemented a version
using Chaff [16] as the SAT solver. But typically, when running Conformant-FF thousands of CNF formulas have to
be considered, each of which is very easy to solve—most of the time, in our experiments, a single run of unit propaga-
tion sufficed to find a satisfying assignment or to prove unsatisfiability. In the version using Chaff, communicating all
the CNFs to Chaff, and the time taken by Chaff to build its (rather complex) internal data structures, quickly became
prohibitive for scaling while the overall time taken to actually solve the CNFs was negligible. So we implemented our
own DPLL-based SAT solver within Conformant-FF, working directly on Conformant-FF’s internal data structures.
The implementation is a naive standard backtracking realized by recursive function calls, using no clever data struc-
tures whatsoever except, for each literal, a linked list to the clauses it participates in. The latter lists are used to quickly
access the relevant clauses when a literal gets set by unit propagation. We did not implement watched literals because
in our experiments typically around 95% of the generated clauses were binary anyway.13 We did not even implement
a variable selection heuristic (i.e., the variables are selected in an arbitrary order) because, as said above, most of
the time a single run of unit propagation sufficed. For the same reason, we did not bother at all with clause learning
techniques. If not run on examples with much more complex formulas as the initial states, it seems unlikely that any

12 Available at http://www.mpi-sb.mpg.de/~hoffmann/ff.html.
13 Note that this is just a phenomenon of the benchmarks used in the experiments; in general, of course the clauses may be arbitrarily large.
Our design choice here, or rather our laziness in the implementation, is dependent on practical experience, i.e., on a certain (seemingly typical)
range of examples. In particular, the DPLL procedure can not be replaced with a 2-CNF reasoner. A promising option may be to employ 2-CNF
simplification algorithms, such as e.g. [17].

http://www.mpi-sb.mpg.de/~hoffmann/ff.html
http://www.mpi-sb.mpg.de/~hoffmann/ff.html
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more fancy SAT solving techniques than what’s implemented will yield significant performance improvements for
Conformant-FF.

6.2. Experimental setup

The experiments were run on a PC running at 1.2 GHz with 1 GB main memory and 1024 KB cache running Linux,
with a runtime cutoff of 1200 seconds. The traditional conformant benchmark domains we used were Bomb-in-the-
toilet (short Bomb), Cube, Omelette, Ring, and Safe (see also, e.g., [2] and [18]). The enriched classical benchmark
domains were Blocksworld, Logistics, and Grid. The individual domains are described below, when we discuss the
respective results. For each example instance we provide, for each planner in the experiment, the runtime taken and the
length of the found plan; in the case of Conformant-FF, we also provide the number of evaluated states, i.e. the number
of states for which a heuristic value was computed. We summarize the results in the text, and, where appropriate and
possible, give intuitive explanations of the observed behavior.

We performed a detailed comparison of Conformant-FF with the most recent available versions of MBP and
KACMBP. These two systems have been shown to be highly competitive, far more efficient than all other existing
systems in many cases. E.g., they are known to outperform GPT in the traditional conformant benchmarks. (KACMBP
is a more advanced version of the conformant planner in MBP—see Section 8 for more details.) We run MBP with its
default settings, and we run KACMBP with the heuristic forward-search option (which seems to give the overall best
performance). These settings are also used in the experimental setups included with the respective downloads.

We also performed comparisons of Conformant-FF with GPT, and with POND. The comparison to GPT was done
on fewer examples but suffices to give a relatively good impression of the performance differences. The comparison to
POND was done on the same set of examples as those for MBP and KACMBP, but POND often behaved very badly
and it is not completely clear what the reason for that is. More details on GPT and POND are below in Section 6.5.

Conformant-FF is given as input a PDDL-like file describing the domain and the task, with obvious modifications
for describing uncertainty about the initial state. Conformant-FF then generates the set of ground actions. MBP is
given as input an NPDDL file, which is an extension of PDDL allowing for uncertainty, non-deterministic effects, and
a rich set of goal conditions. MBP translates this input into a set of ground actions, as well. Its translation process
is naive, and therefore, we made a serious effort to use various NPDDL options that reduce this set of actions. In
particular, NPDDL allows for the definition of functions (which allow efficient encoding of multi-valued variables)—
a capability that Conformant-FF does not have—and we tried to use this option as much as we could. In the input
language of KACMBP, one explicitly specifies each ground action, also with the possibility of using multi-valued
variables, which we used as much as possible.

In the experiments, we found that the performance difference between the heuristics hI and hinc was, most of
the time, negligible. Thus, except in one results table where we consider exceptionally large instances, these tables
contain the results for hI and hφ(act) only. In a single other case (test suite), there was a remarkable difference
between the behavior of hI and hinc, which is described in the text. In a similar fashion, we report detailed results
only for the default setting of repeated states checking, i.e. for the full test. Checking (only) for stagnating states yields
improvements in just a few cases, which are discussed in the text.

6.3. Conformant benchmarks

Table 1 provides our experimental results in the Bomb domain. In our variant of this domain, there are b � 1 bombs,
each of which is initially potentially armed (i.e., it is unknown if the bomb is armed or not). There are t � 1 toilets.
One can “dunk” a bomb into a toilet. The precondition of this is that the toilet is not clogged. As effects, the action
disarms the bomb if it is armed, and the toilet gets clogged. One can “flush” a toilet, with no precondition, making it
un-clogged. In Table 1, the instances “Bomb-bb-tt” are the examples with b bombs and t toilets, respectively.

Regarding runtime, we observe the following. We first consider only the default version of Conformant-FF, i.e. the
hI heuristic. MBP and KACMBP are superior to Conformant-FF when there are few toilets. In the extreme case, when
there is just a single toilet as in the topmost part of Table 1, Conformant-FF gets outperformed quickly as the number
of bombs increases. Then, as the number of toilets rises to 5 and 10 in the next two parts of the table, we observe that
Conformant-FF becomes faster while MBP and KACMBP become slower. For MBP, the loss of efficiency is dramatic,



J. Hoffmann, R.I. Brafman / Artificial Intelligence 170 (2006) 507–541 525
Table 1
Results in the Bomb domain

Instance Conformant-FF MBP KACMBP

hI hφ(act)

t /|S|/l t /|S|/l t /l t /l

Bomb-b5-t1 0.01/19/9 0.00/19/9 0.01/9 0.01/10
Bomb-b10-t1 0.03/64/19 0.03/64/19 0.05/19 0.03/20
Bomb-b20-t1 0.25/229/39 0.53/229/39 0.28/39 0.07/40
Bomb-b50-t1 5.07/1324/99 10.98/1324/99 2.39/99 0.86/100
Bomb-b100-t1 129.70/5149/199 – 20.09/199 2.65/200

Bomb-b10-t5 0.02/30/15 0.00/30/15 0.74/15 0.14/20
Bomb-b20-t5 0.17/155/35 0.32/155/35 2.63/35 0.38/40
Bomb-b50-t5 4.67/1130/95 16.98/1130/95 31.43/95 1.37/100
Bomb-b100-t5 120.99/4755/195 – 275.74/195 4.38/200

Bomb-b5-t10 0.00/5/5 0.00/5/5 1.03/5 0.14/10
Bomb-b20-t10 0.05/85/30 0.04/85/30 9.64/30 0.77/40
Bomb-b50-t10 3.14/910/90 12.98/910/90 115.81/90 2.28/100
Bomb-b100-t10 109.65/4285/190 – 952.09/190 8.69/200

Bomb-b5-b5 0.00/5/5 0.01/5/5 0.20/5 0.13/10
Bomb-b10-t10 0.00/10/10 0.01/10/10 2.32/10 0.36/20
Bomb-b20-t20 0.03/20/20 0.03/20/20 46.12/20 1.59/40
Bomb-b50-t50 0.56/50/50 0.47/50/50 – 46.16/100
Bomb-b100-t100 3.13/100/100 5.77/100/100 – –

Times t in seconds, search space size |S| (number of evaluated states), plan length l. Dashes indicate time-outs.

and with 10 toilets it already performs a lot worse than Conformant-FF. KACMBP remains faster than Conformant-
FF, but still its loss of efficiency is significant. In the extreme case displayed in the bottom part of Table 1, there as
many toilets as bombs. Under these circumstances, MBP and KACMBP both fail to scale up, while Conformant-FF
solves even the task with 100 bombs easily.

Regarding the hφ(act) version of Conformant-FF, it explores the same number of search states as hI , but it takes
considerably more time for doing so. This is due to the time overhead incurred by the more costly SAT tests in the
heuristic computation.

Regarding plan length, we observe that Conformant-FF and MBP find the shortest possible plans, making use of
additional toilets—if there are t > 1 toilets then one can save time by dunking bombs into all of them, and thus sparing
some flushing actions when no more bomb will be dunked into a toilet. In difference to this, KACMBP’s plans flush
the toilet after every dunking action.

The observed runtime behavior is, in fact, relatively easy to explain. As the number of toilets increases, MBP and
KACMBP get in trouble due to, presumably, the exponentially increasing number of states in the belief space. For
Conformant-FF, however, the more toilets there are the more accurate does its heuristic become. One can observe this
in the data when comparing the plan lengths l to the search space sizes |S|. In the top part of the table, |S| is a lot
larger than l. In the bottom part, however, both numbers are equal. The latter means that, to find the plan, the only
states heuristically evaluated by Conformant-FF are those along the search path corresponding to the plan! That is, in
Conformant-FF’s Hill-climbing procedure, every state has a successor (the first one looked at) with a better heuristic
value. Namely, if there are (at least) two non-clogged toilets left then dunking a (potentially armed) bomb into one of
them yields a state with a one step shorter relaxed plan—that shorter relaxed plan can use the other non-clogged toilet
to dispose of all the remaining bombs. If there is just a single non-clogged toilet, then the nearest successor with a
shorter relaxed plan is two steps away. This yields the larger search spaces in the top three parts of Table 1.

Table 2 shows our results in our other traditional conformant benchmark domains, i.e. in Cube, Omelette, Ring,
and Safe. From a quick glance, one sees that Conformant-FF is generally competitive with MBP, often outperforming
it. KACMBP, however, is clearly superior to both other planners in all the domains. We now consider each of the
domains in more detail.

In Cube, one is initially located at any point on a 3-dimensional grid with extension n × n × n. In each dimension
one can “move” up or down. When moving against a border of the grid, nothing happens. We created two different test
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Table 2
Results in the conformant benchmarks except Bomb

Instance Conformant-FF MBP KACMBP

hI hφ(act)

t /|S|/l t /|S|/l t /l t /l

Cube-corner-3 0.01/6/6 0.01/7/7 0.02/8 0.00/6
Cube-corner-5 0.03/12/12 0.07/13/13 2.66/16 0.00/12
Cube-corner-7 0.12/18/18 0.46/19/19 – 0.00/18
Cube-corner-9 0.35/24/24 1.31/25/25 – 0.00/24
Cube-corner-11 0.79/30/30 2.76/31/31 – 0.00/30

Cube-center-3 0.06/93/15 0.03/61/9 0.03/9 0.00/11
Cube-center-5 16.98/2211/45 0.82/262/30 2.80/18 0.04/20
Cube-center-7 – 5.81/825/55 – 0.07/31
Cube-center-9 – 80.61/2052/97 – 0.13/40
Cube-center-11 – 1049.74/4913/147 – 0.16/46

Omelette-3 0.03/79/NS 0.01/79/NS 1.38/NS 0.03/NS
Omelette-5 0.09/161/NS 0.04/161/NS 13.46/NS 0.08/NS
Omelette-10 0.73/468/NS 0.25/468/NS 507.12/NS 0.23/NS
Omelette-15 1.59/917/NS 0.87/917/NS – 0.32/NS
Omelette-20 3.29/1551/NS 2.11/1551/NS – 0.53/NS

Ring-2 0.02/18/7 0.02/22/12 0.00/7 0.00/5
Ring-3 0.17/36/15 0.21/41/18 0.00/12 0.00/8
Ring-4 2.69/66/26 25.13/127/25 0.00/17 0.00/11
Ring-5 – – 0.03/22 0.00/14
Ring-6 – – 0.06/27 0.01/17

Safe-5 0.00/5/5 0.00/5/5 0.01/5 0.00/5
Safe-10 0.05/10/10 0.07/10/10 0.15/10 0.01/10
Safe-30 3.54/30/30 3.79/30/30 – 0.06/30
Safe-50 81.58/50/50 90.68/50/50 – 0.16/50
Safe-70 407.91/70/70 409.93/70/70 – 0.35/70

Times t in seconds, search space size |S| (number of evaluated states), plan length l. Dashes indicate time-outs, NS indicates “no solution”, i.e.
proved unsolvable.

suites, Cube-corner and Cube-center, where the goal is to move into a corner and the center of the grid, respectively. To
get to a corner, it suffices to move n steps in each dimension, in direction of the corner. To get to the center, one must
first make sure to be in some corner, then move back into the center from there. The Cube-corner-n/Cube-center-n
instances in Table 2 are those with extension n.

In Cube-corner, we observe that both Conformant-FF versions scale well, if not competitively with the extreme
efficiency of KACMBP. MBP fails to scale up. Regarding plan lengths, hI -Conformant-FF and KACMBP find the
optimal plans. Using hφ(act), the plans contain one unnecessary action (this is due to a minor implementation detail).
MBP’s plans are somewhat longer. It is interesting to observe that, for both Conformant-FF versions, the search space
is, again, equal to the length of the plan and thus the smallest search space possible. The runtime spent mostly goes
into the computation of state transitions, i.e. of known propositions.

In Cube-center, the behavior of the tested planners is very different. Most strikingly, hI -Conformant-FF completely
fails to scale up. Using hφ(act), performance is better but still a lot worse than in Cube-corner. For both Conformant-FF
versions, the performance decrease is mainly due to a much larger search space than before. The behavior of MBP
and KACMBP does not change that much; the most significant difference is that, now, it is MBP that finds the optimal
plans. KACMBP plan’s are a little longer than optimal, Conformant-FF’s plans are a lot longer than optimal, most of
the time.

Obviously, hφ(act) is a much better heuristic than hI in Cube-center. Also obviously, the reason for that must be
hφ(act)’s more accurate reasoning about past achievements—there is no other difference between the heuristics. What’s
less obvious is exactly what phenomenon makes it important to reason about past achievements in Cube-center. Here
are some intuitions we got from looking at some relaxed plans in small examples. For the initial state of a Cube-center
instance, the relaxed plan (which is equal for both heuristics) is relatively short. When ignoring the delete lists, one can
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reach the center of an n-cube (for odd n) with n − 1 steps in each dimension: the old positions are not deleted, and so,
to reach the center from any position, it suffices to do �n/2� steps up and �n/2� steps down. That is, in the relaxation
the planner does not realize that it has to move to a corner first. This yields local minima that are hard to explore.
They are harder to explore for hI because, as the number of move actions on the path to a believe state increases,
hI ’s over-approximating reasoning about these action’s consequences is likely to conclude that the goal was already
achieved by them. Indeed, with hI Conformant-FF gets down to a state with empty relaxed plan extremely quickly,
and then spends ages trying to find a state that actually satisfies the goal.14

In the Omelette domain, n eggs must be broken into a bowl without spoiling the bowl. There are two bowls that
can both contain up to n eggs. One can “grab” an egg (one can do this infinitely often, i.e. there is no finite store of
eggs), one can “break” the egg into one of the bowls, or one can “clean” a bowl, i.e. dispose of its contents. One can
also “pour” the contents of one bowl into another, with the obvious effect depending on the fill status of both bowls.
Breaking an egg into a bowl spoils the bowl by a non-deterministic effect (namely, when the egg is bad, which one
does not know without breaking it). As said, we haven’t yet implemented support for such effects so we have modeled
that effect as a conditional effect that has a new, unknown, “dummy” proposition as its condition. Note that this is
different from a truly non-deterministic effect in that the outcome of the effect will be the same for all eggs, only
we don’t know what this constant outcome is. Still, there is no conformant plan to our Omelette tasks. We used the
“dummy” encoding in the input tasks for all tested planners. The instances Omelette-n in Table 2 are, of course, those
with n eggs in the goal.

Once again KACMBP scales—i.e., proves these tasks unsolvable—best, followed closely by Conformant-FF and
not so closely by MBP. Note that proving unsolvability involves, for all the systems here, exhausting the space of
reachable belief states. One interesting observation is that hI and hφ(act) share the same search space—the dead ends
detected by both heuristics, i.e. the states with heuristic value ∞, are the same. Unexpectedly, hφ(act) is a little faster.
The heuristic computation of hI involves traversing longer paths in the Imp tree (when finding leafs of this tree), since
that tree goes back all the way to the initial state. This takes more time than the state-formula CNF reasoning done
by hφ(act). Probably this time overhead is just due to our relatively naive implementation of traversing paths in the Imp
tree. We remark that, using hinc, the runtime is roughly similar to that of hI , but a few more states (precisely, n + 2
more states) are explored since hinc cannot detect dead ends.

In the Ring domain, there are n rooms through which one can “move” in a cyclic fashion. The initial location is
unknown. Each room has a window which is either open or closed or locked. The initial states of the windows are
unknown. One can apply an action “close” which closes the window of the room in which one is currently located,
and one can apply an action “lock”which locks the window of the room in which one is currently located, given the
window is already closed. A solution plan moves once through the ring and applies the “close” and “lock” actions
after each move. The instances Ring-n in Table 2 are those with n rooms. MBP and KACMBP scale very well,
Conformant-FF does not, independently of the heuristic used. KACMBP finds the optimal plans, MBP’s plans are a
little longer, Conformant-FF’s plans are considerably longer.

The poor runtime performance of Conformant-FF here is, partly, due to the oddity in repeated states checking that
we mentioned at the end of Section 5. No proposition becomes known until the entire task is solved, every visited
state is stored in the same hash table entry, and the number of state comparisons is a square function in the search
space size. Turning the repeated states check off, and using only the stagnating states check instead, Conformant-
FF with hI solves the five Ring examples with 0.00/18/7, 0.04/50/20, 0.29/88/39, 1.79/139/64, 9.55/201/95 sec-
onds/search states/actions, respectively. Section 9 outlines some ideas on alternative ways to avoid the overhead of
full repeated states checking.

In the Safe domain, a safe has one out of n possible combinations, and one must “try” all combinations in order
to assure the safe door is open. The instances in Table 2 are those with n combinations. Once again, KACMBP is ex-
tremely efficient. Conformant-FF is a lot slower, MBP can solve only the two smallest examples within the time limit.
All planners find the optimal n-action plans trying all combinations in some order. There is no significant difference
between the performance of hI and hφ(act), which both return perfect (equal to the real goal distance) heuristic values.
Like in Ring, most of the runtime goes into the repeated states checking, because the first time a proposition (“open-

14 A possible way out of this dilemma would be to extend Conformant-FF with mechanisms structuring the search based on “necessary knowl-
edge”, as is done in KACMBP [19]: the “necessary knowledge” to reach the center of the cube is the precise position; posing this knowledge as a
goal means to move into a corner, so a decomposition of this sort would likely solve Conformant-FF’s difficulties in Cube-center.
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safe”) becomes known is when the task is solved. With only stagnating states checking, hI -Conformant-FF solves the
tasks with 0.00/5/5, 0.00/10/10, 0.16/30/30, 1.59/50/50, 6.27/70/70 seconds/search states/actions, respectively.

6.4. Enriched classical benchmarks

Table 3 provides our experimental results in the enriched Blocksworld and Logistics domains. A quick glance at
the results reveals that Conformant-FF clearly outscales both MBP and KACMBP in all our test suites.

In all our classical domains enriched with uncertainty, we scale the instances in terms of an uncertainty parameter,
denoted “U” in the names of the instances, and in terms of various size parameters as appropriate in the domain. For
each domain, we have three test suites, with U values 2, 3, and 4, respectively (more details are below).

The Blocksworld domain we use is the variant with three operators to put a block x from another block y onto
the table (“move-to-table”), to put a block x from a block y onto a different block z (“move”), and to put a block x

from the table onto a block y (“move-from-table”). The uncertainty in our test suites is that the top U blocks on each
initial stack (which may be the whole stack) are arranged in an unknown order. Putting a block x from a block y onto
the table has conditional effects: (only) if x is located on y in the state of execution, x is put onto the table, and y

is cleared. That is, (only) if x is on y then x, including the whole stack of blocks on top of it, is moved to the table.
Across our three test suites, the examples are generated with the software by Slaney and Thiebaux [20]. The instances
named Blocksworld-UU -bb in Table 3 contain b blocks. Conformant-FF shows fine scalability; the behavior of hI

Table 3
Results in the enriched Blocksworld and Logistics domains

Instance Conformant-FF MBP KACMBP

hI hφ(act)

t /|S|/l t /|S|/l t /l t /l

Blocksworld-U2-b5 0.00/9/7 0.00/9/7 0.75/7 0.35/5
Blocksworld-U2-b6 0.02/19/10 0.01/19/10 16.01/10 0.53/17
Blocksworld-U2-b7 0.03/31/13 0.04/31/13 1148.25/14 1.24/11
Blocksworld-U2-b13 0.44/93/20 0.42/93/20 – –
Blocksworld-U2-b20 3.75/310/34 3.77/310/34 – –

Blocksworld-U3-b5 0.00/7/7 0.01/7/7 0.53/8 0.10/8
Blocksworld-U3-b6 0.01/16/12 0.01/16/12 10.62/12 1.08/29
Blocksworld-U3-b7 0.03/30/16 0.04/30/16 – –
Blocksworld-U3-b13 0.75/136/32 0.70/136/32 – –
Blocksworld-U3-b20 5.49/423/42 5.37/423/42 – –

Blocksworld-U4-b5 0.01/7/7 0.00/7/7 0.74/7 0.10/7
Blocksworld-U4-b6 0.08/22/19 0.08/22/19 19.15/19 1.18/11
Blocksworld-U4-b7 0.13/28/23 0.13/28/23 1028.14/21 1.35/13
Blocksworld-U4-b13 2.92/83/43 4.73/83/43 – –
Blocksworld-U4-b20 1.96/171/48 1.87/171/48 – –

Logistics-U2-c2-p2-a1 0.00/12/11 0.00/12/11 1.56/13 0.14/17
Logistics-U2-c2-p4-a1 0.01/23/23 0.02/23/23 31.71/25 3.15/49
Logistics-U2-c3-p2-a1 0.01/26/17 0.01/26/17 38.16/17 0.80/27
Logistics-U2-c3-p3-a2 0.03/48/26 0.04/48/26 – 615.95/196
Logistics-U2-c10-p10-a10 4.81/298/81 4.52/298/81 – –

Logistics-U3-c2-p2-a1 0.03/27/19 0.03/27/19 13.87/22 0.66/23
Logistics-U3-c2-p4-a1 0.05/39/32 0.04/39/32 908.11/54 –
Logistics-U3-c3-p2-a1 0.03/32/20 0.02/32/20 780.19/28 6.41/29
Logistics-U3-c3-p3-a2 0.05/43/26 0.06/43/26 – –
Logistics-U3-c10-p10-a10 12.90/437/110 14.83/437/110 – –

Logistics-U4-c2-p2-a1 0.01/21/17 0.01/21/17 76.34/28 1.25/24
Logistics-U4-c2-p4-a1 0.14/57/42 0.16/57/42 – –
Logistics-U4-c3-p2-a1 0.05/31/18 0.04/31/18 – 60.13/36
Logistics-U4-c3-p3-a2 0.16/77/41 0.18/77/41 – –
Logistics-U4-c10-p10-a10 26.95/555/114 31.70/555/114 – –

Times t in seconds, search space size |S| (number of evaluated states), plan length l. Dashes indicate time-outs.
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Table 4
Results in the enriched Grid domain, random instances

Instance Conformant-FF MBP KACMBP

hI hφ(act)

t /|S|/l t /|S|/l t /l t /l

Grid-U2-x3-y3-s2-k11-l22 0.03/27/14 0.06/27/14 MEM 1.17/26
Grid-U2-x3-y3-s2-k11-l22 0.05/33/16 0.08/33/16 MEM 10.75/54
Grid-U2-x3-y4-s2-k12-l23 0.11/53/24 0.25/53/24 MEM 783.82/48
Grid-U2-x3-y4-s2-k12-l23 0.26/114/27 0.59/114/27 MEM –
Grid-U2-x3-y3-s2-k11-l22 0.22/104/28 0.56/104/28 MEM –

Grid-U3-x3-y3-s3-k111-l111 0.00/13/8 0.01/13/8 MEM 10.36/14
Grid-U3-x3-y4-s3-k112-l112 0.07/44/21 0.22/44/21 MEM 254.12/49
Grid-U3-x3-y4-s3-k112-l112 0.12/48/24 0.33/48/24 MEM –
Grid-U3-x3-y3-s3-k111-l111 0.13/62/28 0.28/62/28 MEM –
Grid-U3-x3-y3-s3-k111-l111 0.60/223/40 1.44/223/40 MEM –

Grid-U4-x3-y4-s4-k1111-l1111 0.02/8/8 0.03/8/8 MEM 88.53/8
Grid-U4-x3-y4-s4-k1111-l1111 0.02/12/12 0.06/12/12 MEM –
Grid-U4-x3-y4-s4-k1111-l1111 0.04/18/12 0.08/18/12 MEM –
Grid-U4-x3-y4-s4-k1111-l1111 0.24/60/25 0.70/60/25 MEM –
Grid-U4-x3-y4-s4-k1111-l1111 0.29/64/30 0.83/64/30 MEM –

Times t in seconds, search space size |S| (number of evaluated states), plan length l. Dashes indicate time-outs, MEM indicates out of memory.

and hφ(act) is nearly identical. MBP and KACMBP do not scale up. No planner is clearly superior in terms of plan
length.

Our Logistics domain is the following modification of the well-known standard encoding. The uncertainty we
introduced lies in that the initial position of each package within its origin city is unknown. Loading a package onto
a truck has a conditional effect that only occurs when the package is at the same location as the truck. The amount
of uncertainty increases with the size of the cities, i.e. city size is our uncertainty parameter U. The instances named
Logistics-UU -cc-pp-aa in Table 3 contain c cities (of size U ), p packages to be transported, and a airplanes. In each
city, there is a single truck. All the examples are randomly generated by uniformly choosing the initial positions of
trucks and airplanes, and the initial positions and goal positions of packages. The first four instances in each of the
test suites were chosen relatively small in order to be able to obtain some plans with MBP. The largest examples, with
10 cities, packages, and airplanes, were chosen to show Conformant-FF’s fine scalability. Again there is not much
difference between using hI or hφ(act); the latter is a little slower in most examples (particularly, in the largest one).
The plans found by MBP or KACMBP are, in most cases, considerably longer than those found by Conformant-FF.

Table 4 shows our comparative results in the enriched Grid domain. The Grid domain was used in the 1st inter-
national planning competition (alongside AIPS-98). A robot moves on a 2-dimensional grid on which positions can
be locked and, to be accessible, must be opened with a key of a matching shape. The robot can hold one key at a
time, and the goal is to transport some keys to specified goal positions. We introduced uncertainty about the locked
positions on the grid. The shape of these locks was specified to be an unknown one out of U possible shapes. Opening
a lock with a key has a conditional effect that occurs only if the key is of the same shape as the lock. One must thus
try all possible keys in order to make sure that a lock is opened. The instances parameters of this domain are more
complicated than those of the domains we have seen previously, and so the names of the instances, as show up in Ta-
ble 4, are a little complicated. Grid-UU -xx-yy-ss means that the grid has x-extension x and y-extension y, and there
are s different shapes. The parameters indicated by “-k” and “-l” provide s numbers: the number of keys and locks of
each individual shape, namely. So in Grid-U2-x3-y3-s2-k11-l22 there are one key, and two locks, of each of the two
shapes. We generated our instances randomly, using software that uniformly distributed the initial positions of robot,
keys, and locks, as well as the goal positions of the keys. Of course, such a generation process can result in unsolvable
examples—e.g. if, in order to get to a key with a certain shape, the robot has to move across a lock with the same
shape. Since the examples we generated for the experiment were relatively small, Conformant-FF could determine
unsatisfiability within a few seconds for all the tasks we generated. For the test suites, we used the first few solvable
tasks that came up. As one can see in Table 4, the test examples within the suite for each U value do not differ very
much in terms of their size parameters. The difficulty of instances in Grid varies a lot already with the distribution of



530 J. Hoffmann, R.I. Brafman / Artificial Intelligence 170 (2006) 507–541
Table 5
Results in the enriched Grid domain, AIPS’98 instances

Instance hinc hI hφ(act)

t /|S|/l t /|S|/l t /|S|/l
Grid-U2-AIPS98-1 0.09/25/16 0.16/25/16 0.23/25/16
Grid-U2-AIPS98-2 1.71/198/61 1.71/198/61 4.50/198/61
Grid-U2-AIPS98-3 3.39/386/83 3.74/386/83 13.63/386/83
Grid-U2-AIPS98-4 3.86/368/60 3.83/368/60 7.79/368/60
Grid-U2-AIPS98-5 150.37/1516/224 163.47/1516/224 –

Grid-U3-AIPS98-1 0.28/52/24 0.46/52/24 1.19/52/24
Grid-U3-AIPS98-2 5.14/378/96 5.96/378/96 36.78/472/91
Grid-U3-AIPS98-3 7.43/548/83 8.68/548/83 40.72/548/83
Grid-U3-AIPS98-4 10.44/692/79 11.50/692/79 37.31/692/79
Grid-U3-AIPS98-5 782.55/3744/279 832.01/3744/279 –

Grid-U4-AIPS98-1 0.73/71/34 0.71/71/34 2.43/71/34
Grid-U4-AIPS98-2 25.44/943/127 29.45/943/127 485.62/1870/138
Grid-U4-AIPS98-3 14.86/763/97 18.12/763/97 123.75/763/97
Grid-U4-AIPS98-4 18.70/1102/91 21.92/1102/91 87.79/1102/91
Grid-U4-AIPS98-5 759.44/2477/289 828.39/2477/289 –

Times t in seconds, search space size |S| (number of evaluated states), plan length l. Dashes indicate time-outs.

the locks and keys. We ordered the instances in terms of their difficulty as indicated by the length of the plan found by
Conformant-FF. As above in Blocksworld and Logistics, both Conformant-FF versions behave very similar, sharing
the same search space; in difference to before, hφ(act) is quite clearly slower than hI . In all examples, MBP runs out
of memory before starting the actual search; the largest instance we could solve with MBP had only 4 positions on the
Grid. KACMBP can solve some of the smaller instances, finding comparatively long plans except in one case.

In our random generation process for Grid, the need for filtering unsolvable examples limits the example size
severely. To show that Conformant-FF really scales up in the domain, we therefore also ran an experiment with the
five Grid instances used in the AIPS-98 competition. These examples are rather large. In each of them there are 4
different shapes. They feature 5 × 5, 6 × 6, 7 × 7, 8 × 8, and 9 × 9 grids, respectively; there are 9, 10, 11, 12, and
13 keys; there are 8, 8, 10, 9, and 19 locks. As before, we introduced uncertainty into the instances by giving every
lock a range of U possible shapes, U increasing from 2 to 4. We did not try to run MBP and KACMBP on these large
examples. Instead we show results for all three variations of Conformant-FF’s heuristic function, since they all differ
considerably in these challenging tasks. The data are in Table 5.

The main difference between the heuristic functions lies in the speed of computation. In all except two cases—Grid-
U3-AIPS98-2 and Grid-U4-AIPS98-2—the search spaces (and returned plans) are the same. Comparing hinc to hI ,
skipping the SAT reasoning in the heuristic computation yields a small but consistent time advantage. Comparing hI

to hφ(act), doing the SAT reasoning with the initial state formula, rather than with the formula describing the considered
belief state, yields huge savings. Note that the examples become considerably harder to solve as uncertainty increases
(with the single exception of Grid-U3-AIPS98-5 and Grid-U4-AIPS98-5). The plan length increases in all cases. With
more uncertainty, more keys must be transported to open the necessary locks.

All in all, from our results in the enriched classical domains, we conclude that our approach has the potential to
combine the strengths of FF with conformant abilities in domains that combine classical and conformant aspects. In
this respect, Conformant-FF is superior to MBP and KACMBP. We consider this an important advantage because it
seems likely that, in real-world domains, classical and conformant (uncertain) aspects typically occur together.

6.5. Comparison to GPT and POND

We also ran some experiments with GPT and with POND. We briefly summarize the results, first for GPT then for
POND.

GPT is known to be slower than MBP and KACMBP in the traditional conformant domains. We wanted to verify
that this is true for the mixed domains, too. Thus, we conducted a number of experiments with GPT on a sample
of mixed domains instances. In almost all of them, GPT was slower than MBP and KACMBP, and much slower
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than Conformant-FF. In the three smallest Blocksworld-U2 examples, the per-instance runtimes (pure solution times
excluding parsing and compilation) we got are 45.77, 112.91, and 1025.33 seconds for GPT as compared with 0.75,
16.01, and 1148.25 for MBP, 0.35, 0.53, and 1.24 for KACMBP, and a few milliseconds for Conformant-FF. For the
smallest three instances of Logistics-U2, GPT takes 1.89, 37.19, and 415.44 seconds, MBP takes 1.56, 31.71, and
38.16 seconds, KACMBP takes 0.14, 3.15, and 0.80 seconds, and Conformant-FF takes a few milliseconds. In the
Grid suites, GPT kept producing error messages for reasons we could not figure out. These results clearly indicate
that, to a varying degree, all of MBP, KACMBP, and Conformant-FF are superior to GPT in these domains.

POND’s input language for conformant planning is very similar to that of Conformant-FF; all one needs to do is
to replace some keywords in the problem descriptions. We ran POND on all the test examples used in the detailed
experiments above, but could get it to find plans in only a fairly small subset of these. If that is due to details in our
encoding of the examples, or to inefficiencies in POND’s implementation, or to real weaknesses of POND’s approach
(more on that approach below in Section 8), is hard to tell.

In the Cube examples, POND terminated with a segmentation fault. In most of the other test suites, in the larger
examples POND ran out of memory during the pre-process that builds its “labelled uncertainty graph” (LUG), the
structure that underlies its heuristic computations (see also Section 8). In the small examples that were solved, that
pre-process terminated very quickly. The detailed results were as follows (we do not repeat the data for the other
planners, given in the tables above).

• In Bomb, the LUG ran out of memory on all examples with more than 10 bombs. The other examples, Bomb-
t1-b5, Bomb-t10-b10, Bomb-1-5, Bomb-1-10, Bomb-5-10, Bomb-10-5, were solved in 1.08, 59.01, 0.20, 1.63,
19.10, and 4.23 seconds, respectively. This is considerably slower than either of Conformant-FF, MBP, and
KACMBP; compare Table 1. The number of plan steps was always twice the number of bombs, i.e. as with
KACMBP no use of additional toilets is made.

• In Omelette, the LUG ran out of memory even in the smallest example.
• The smaller four instances of Ring were solved in 0.13/6, 0.64/11, 14.18/15, and 694.91/15 seconds/steps, re-

spectively. On the largest instance, POND ran out of time. That is, here POND scaled better than Conformant-FF,
finding good-quality plans.

• The five Safe instances were solved in 0.13, 0.18, 7.12, 90.77, and 549.54 seconds, with optimal plans. Here,
POND’s performance is roughly similar to that of Conformant-FF.

• In Blocksworld, the LUG ran out of memory on the two larger examples in each suite, i.e., on those with more than
7 blocks. In the smaller examples, POND is competitive with MBP and KACMBP(solving one more example),
but lags far behind Conformant-FF. Precisely, the three smaller Blocksworld-U2 examples are solved in 2.32/6,
16.91/10, and 65.18/12 seconds/steps. In Blocksworld-U3 these numbers are 1.95/7, 10.00/9, and 48.63/15. In
Blocksworld-U4 they are 1.67/8, 32.74/19, and 206.13/24.

• In Logistics, the LUG ran out of memory in all but three of the smallest examples. The three solved examples are
Logistics-U2-c2-p2-a1, Logistics-U2-c2-p4-a1, and Logistics-U3-c2-p2-a1. They are solved in 3.73/7, 16.00/11,
and 41.55/10 seconds/steps. Compared to the other planners here, POND is relatively slow but finds very good
plans (the best one found, in all three cases).

• In Grid, the LUG ran out of memory even in the smallest example.

7. Non-deterministic effects

If an effect is marked as non-deterministic, and is applied to a world state w, then the outcome are two possible
successor world states w′ and w′′—one where the effect was applied, one where it was not applied. In the presence
of such effects, a conformant plan must achieve the goals for all possible initial world states and for all possible
outcomes of the non-deterministic effects. Formulated in terms of belief states, the criterion that a conformant plan
has to meet is still that it ends in a belief state s where all world states w in s contain the goals. We have not yet
implemented support for non-deterministic effects in Conformant-FF. While the needed extensions are very easy for
the computation of known propositions, and for the computation of relaxed plans, it is unclear how to adequately
extend our repeated states checking. Doing the latter is a topic for future work. Here, we outline the main issues
arising in that important context.
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The computation of known propositions can be extended to non-deterministic effects as follows. When generating
the formula φ(act) encoding the semantics of an action sequence act, simply skip non-deterministic effects when
inserting the effect axioms, i.e., insert those for deterministic effects only. The rest of the formula’s definition, as well
as the SAT calls made to check for known/negatively known propositions, can remain exactly the same. To see this,
reconsider Proposition 2. With non-deterministic effects, there are now several satisfying assignments to φI (act)—
namely, corresponding exactly to all possible outcomes of the non-deterministic effects. (When non-deterministic
effects do not enforce their adds and deletes by effect axioms, but the frame axioms for the respective proposition
values respect these effects, then consequently the affected variables can take on both truth values in the next time
step.) Still, the formula implies a proposition value at a time step only if the value holds at this step in all possible
outcomes of the action sequence, which is exactly what we need to know about.

To extend the relaxed planning process to non-deterministic effects, it suffices to ignore these. A non-deterministic
effect cannot be used to establish a proposition, and in the relaxed setting a non-deterministic effect, like the deter-
ministic ones, cannot interact with the propagation of a positive truth value. Note that we make no claims whatsoever
about how this technique, and the technique described above, will behave in practice; this has to be tested empirically.

In the repeated states checking, one can, in theory, proceed with an extension just as simple as the ones outlined
above. Consider the belief state equivalence test. Say we simply leave the entire machinery unchanged, using the
extended definition of the formulas φ(act). Say φI=(act) ∧ φI=(act′) ∧ ¬p(act) ∧ p(act′) is unsatisfiable. With the
extended definition of the formulas φ(act), this means that for all possible initial world states, for all possible outcomes
of the non-deterministic effects, p can’t be false after act but true after act′. So by doing exactly the same SAT calls as
before, one gets a sufficient test for belief state equality. The test succeeds iff, starting from every possible initial world
state, the resulting world states in s and s′ are the same independently of the outcomes of the non-deterministic effects.
Note that this is a very strong requirement. It is the nature of non-deterministic effects to result in several different
world states. Unless these different world states are merged back into a single one by later actions in the sequence,
the test will fail. Consider the following example. The initial state formula is empty, and there is a single action a that
has no other effects than non-deterministically adding a proposition p. Obviously, the belief state after act = 〈a〉 is
equal to the belief state after act′ = 〈a, a〉. The reached world states are {p} and ∅ in both cases. However, the formula
φI=(act) ∧ φI=(act′) ∧ ¬p(act) ∧ p(act′) asks if it can be the case that p is false after act but true after act′. And of
course that can happen—namely, when a’s effect does not occur on act, but does occur on act′. Note that the SAT test
would fail (the formula would be satisfiable) even if we were to compare act to itself.

Similar difficulties as above can be observed with the (straightforward extension of the) belief state domination test.
The problem with the SAT-based equivalence/domination tests is that, in the presence of non-deterministic effects, the
formulas φ encode a set of world states (rather than just a single world state) for every possible initial world state I .
This makes the SAT tests lose precision. As said, developing repeated states checking methods that are practically
useful, in the presence of non-deterministic effects, is a topic for future work.

8. Related work

A better understanding of Conformant-FF can be obtained by examining its relation to a number of strands of work
on conformant planning. Below we describe the three main strands of research on conformant planning, and then
place Conformant-FF in their context.

CGP [21] is the first specialized conformant planner. CGP takes the essential ideas behind the Graphplan [15]
algorithm and applies them in the context of conformant planning. For its forward reachability phase, CGP builds one
planning graph for each possible initial world state, while recording mutexes within each graph and between graphs.
It searches backward for a solution on these planning graphs. Action choices made in one graph are propagated to the
others during this process. However, it has difficulty scaling up when the number of initial states is large. Thus, we
can characterize CGP’s approach as based on utilizing representation and solution methods from classical planning
for reasoning about individual initial states, while propagating information between these solutions in a sophisticated
way. A close relative of this is Frag-Plan [22], which generates plans (using planning-graphs) for concrete initial
states, attempting to first tackle initial states for which finding a plan is harder. The initial plan is then extended to
cover all possible initial states by including fragments from plans for different initial states. This requires some back-
and-forth reasoning between different states: while adapting an existing plan to work for a new initial state s we may
make it inappropriate for some previously handled initial state s′. While fixing this problem, we may introduce a
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problem somewhere else, etc. C-Plan [8] is related to CGP and Frag-Plan in the sense that it also relies on classical
planning techniques to a large extent. Namely, it uses sat-based (classical) planning techniques to generate candidate
plans: a candidate plan is a satisfying assignment to the initial state formula plus the usual SAT encoding, meaning
that the candidate is a plan for at least one possible initial world (the one chosen by the assignment). It is then tested
(by another SAT test) whether the candidate is, in fact, a conformant plan. Like CGP and Frag-Plan, this approach
is likely to have trouble scaling in the number of initial states—one would expect the number of candidate plans to
be closely related to the number of initial states, although the relationship can be complicated, in general. Unlike
CGP and Frag-Plan, C-Plans generate-and-test approach has no backtracking element; the candidate plans are viewed
separately and no interactions between them are explored.

The most successful strand of work on conformant planning is based on the idea of search in the space of belief
states. Planners from this breed differ in two central parameters: how they represent belief-states and how they search
in this space. In particular, among these planners, the most successful ones employ some form of heuristic search.
The first planner to utilize belief-space search is GPT [1]. GPT represents belief-states explicitly, and searches this
space using A*-based forward heuristic search. The heuristic utilizes relaxed dynamic programming techniques to
compute reachability and distance estimates. GPT finds optimal plans, but has problems scaling up because, first, its
heuristic is often not informative enough and, second, aside from the size of the belief space, the size of the belief
states can be prohibitive even in relatively simple conformant planning problems. To remedy this problem, CMBP [2]
utilizes symbolic, BDD-based data structures for representing belief states, and uses BDD manipulation techniques
to perform state update. This change leads to a much more compact and manageable approach for planning in belief
space. However, CMBP performs uninformed breadth-first search, and so its ability is still limited, like GPT’s, through
the size of the belief space. This problem was addressed by HSCP [23]. HSCP uses symbolic machinery much like
CMBP to perform backward heuristic search. That is, it performs regression at the level of belief state representation.
The regression of a belief-state b over an action a is the largest belief-state for which by applying a we get to a
belief state that is contained in b. The heuristics used there is based solely on the cardinality of the belief state. While
better than CMBP, this heuristic is somewhat simplistic. A more advanced planner related to HSCP is KACMBP [19].
KACMBP uses forward search. Thus, it is informed by the initial state and considers reachable states only. KACMBP
also uses a more sophisticated heuristic approach. Although it also considers the cardinality of belief states, it does
not do so blindly. KACMBP attempts to actively achieve knowledge that it deems useful by preferring actions that
lead to states with more desirable knowledge.15

CAltAlt and POND [7,24] are two more recent planners that utilize heuristic search over belief states. CAltAlt
searches backwards, whereas POND searches forward. Like CMBP and its descendants, POND uses BDDs to repre-
sent the current belief state, while CAltAlt uses a clause-based representation. However, they are also closely related
to CGP in that they make extensive use of planning graphs in generating their heuristics estimates. Indeed, the main
novel ideas in these planners are their more informed heuristic estimates and the data-structures used to obtain them.
In particular, they introduce a labeled uncertainty graph, a planning graph-like structure that stores in one planning
graph information that CGP obtains from multiple planning graphs. This is done by labeling certain facts with the
initial state conditions that support them (represented using BDDs), and propagating these labels over the actions.
However, unlike CGP, the planning graph is not used to actually perform the search.

Finally, there is a third strand of work on conformant planning which we shall refer to as the logic-based approach.
What is common to the set of planners in this (more loosely related) category is the reduction of conformant planning
to inference tasks in existing logical formalisms. We have already discussed the C-Plan planner which uses SAT tech-
niques. C-Plan generates candidate plans using planning-as-satisfiability based methods, and then uses unsatisfiability
checks to see whether they are actually conformant plans. QBFPLAN [25] uses the more powerful (and more com-
plex) formalism of quantified boolean formulas. That is, it reduces the question of the existence of a (bounded-length)
conformant plan to the satisfiability of a quantified boolean formula. A different reduction is used by DLVk [26]. It
reduces (bounded) conformant planning to answer-set programming and uses the rich domain description language K.
Somewhat related to this approach is the Petrick and Bacchus’ PKSPlan [18] which shares with DLVk the idea of us-

15 Note: CMBP was integrated into the more general MBP planner, which supports, in addition, different search methods (forward, backward,
heuristic) as well as contingent planning and more. Thus, in the experimental section and throughout much of the paper we speak of MBP, not
CMBP. In terms of historical progression of ideas, the above is a more useful description. However, restricted to conformant planning, KACMBP
is a more advanced planner than the current MBP.
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ing a rich domain description language, albeit a different one. PKSPlan uses logical formulas to represent the current
state of knowledge of the agent. Its actions explicitly manipulate these knowledge formulas.

In terms of performance, belief-space search planners are the best studied and, probably, the best performers.
A good experimental analysis of the more successful approaches appear in [19]. Of these planners, aside from
Conformant-FF, KACMBP appears to be the most efficient, outperforming CGP and its related planners. We note
that w.r.t. Conformant-FF, their results basically agree with our results: KACMBP is generally better on the traditional
conformant domains, whereas Conformant-FF is better on the mixed domains. It is somewhat difficult to compare
them to the logic-based planners because of differences in the input languages. For instance, the input language used
by DLVk is much richer than the PDDL-like language Conformant-FF uses, whereas the language used by PKSPlan
is somewhat incomparable. The comparisons of CAltAlt and KACMBP in [24] shows that CAltAlt is competitive
with KACMBP, in fact, fairing better than it in some rover and logistics problems. However, that comparison does not
include many standard test domains (e.g., cube, ring, omelette, safe).

Conformant-FF is best viewed as a belief-space search planner, as it represents the current state of the search
process using a structure that is equivalent to a belief state. Its main innovation is the implicit manner in which it
describes these belief-states. This description is much more compact than the explicit description used by any of the
other belief-space search planners. The price Conformant-FF pays for this space reduction is in the time required to
answer queries about each belief state. However, as evident from our results, this tradeoff often pays off. Another
interesting innovation of Conformant-FF is the use of a single planning-graph for computing a relaxed plan. Unlike
the multiple planning graphs used by CGP, this single planning graph is able to capture information about multiple
initial states, by explicitly differentiating between known and unknown propositions. This allows Conformant-FF to
produce a relatively informed heuristic estimate (in fact, a relaxed plan) quickly. CAltAlt and POND also utilize more
complex reasoning on top of a single planning graph, but that appears more complex and more costly to construct.
Conformant-FF does not take into account issues such as the cardinality of a belief-state or desirable knowledge in
this computation. Possibly, by taking these issues into consideration, following KACMBP, a more robust heuristic
estimate can be obtained (see also next section). Finally, Conformant-FF is related to the logic-based strand in its
use of logical formulas to represent the current belief-state, and the use of (un)sat queries to check properties of this
state, which is virtually identical with the use of such checks by C-Plan to determine whether a candidate plan solves
the task. Conformant-FF simply makes much more extensive use of these checks, using them to check properties of
partial plans, as well.

9. Conclusion

We introduced a new, lazy, approach for representing belief states in conformant planning. Based on that, we
extended the classical heuristic forward search planner FF into conformant planning. The necessary knowledge about
belief states—the known propositions—is computed via a CNF reasoning technique. The relaxed planning method
that FF uses to compute its heuristic function is modified accordingly, with a complete but unsound form of the
CNF reasoning about known propositions. The resulting planner Conformant-FF is competitive with the state-of-the-
art conformant planners MBP, KACMBP, GPT, and POND, sometimes outperforming all of them. Conformant-FF
shows the potential to combine the strength of FF with conformant abilities.

An interesting idea how to overcome Conformant-FF’s current limitations is to try and combine the heuristic
principles used in Conformant-FF and KACMBP. While the former system tries to minimize estimated goal distances,
the latter system tries to minimize belief state size (more precisely, tries to accomplish useful information about the
state). The comparative data obtained in our experiments reveals that the two kinds of approaches have very different
strengths and weaknesses. KACMBP outperforms Conformant-FF in cases where planning comes close to reducing
the initial uncertainty. Conformant-FF becomes superior when more classical planning aspects come into the play.
A promising idea is to use a hybrid heuristic (h, b) where h estimates goal distance, b estimates belief state size, and
(h(s), b(s)) < (h(s′), b(s′)) if h(s) < h(s′) or h(s) = h(s′) and b(s) < b(s′). To improve Conformant-FF, the main
question to answer here is if, and how, belief state size can be estimated based on our data structures. Similarly, one
can try to improve KACMBP by estimating goal distances based on KACMBP’s data structures.

It may be possible to overcome the huge overhead induced by Conformant-FF’s repeated states checking, as ob-
served in the Ring and Safe domains, when there is a lack of different known/unknown propositions in the search
space. One can introduce incomplete pre-tests to avoid full CNF tests for state pairs s and s′ that can quickly shown
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to be non-equal/non-dominating. For example, say φ is the CNF whose satisfiability must (repeatedly) be tested for
deciding whether s is equal to s′. If even a 2-projection of φ is solvable, then φ is solvable, and s is not equal to s′.

In the extension to non-deterministic effects, as said it is most important (and difficult) to come up with an adequate
extension of repeated states checking. One idea that may turn out feasible is to enumerate the outcomes of the non-
deterministic effects on the action sequences act and act′. Say it is the case that, for every initial world state, for every
outcome of the effects on act, there is an outcome of the effects on act′ so that the resulting world states are equal.
Then the belief state represented by act′ is a superset of the one represented by act, and act′ can be pruned if act was
visited before. Note that, formulated in terms of a satisfiability test, the outlined test involves a quantifier alternation
in the prefix of a CNF formula. Such a test might be best implemented using a QBF solver.

An important observation is that our approach is not inherently restricted, through relying on its “known propo-
sitions” computation, to conjunctive goals and action preconditions. If the goal is a DNF formula G, then an action
sequence act ends in a goal state iff φ(act) implies G at its end point. That entailment check can be done by conjoin-
ing φ(act) with the negation of G, yielding a new CNF, and seeing whether that new CNF is satisfiable. Similarly,
DNF action preconditions can be dealt with. DNF effect conditions can be equivalently split up into a separate effect
for each disjunct. Together with the standard pre-processes known from classical planning, compiling quantifiers and
negations away [27], with this, one can handle the full scale of ADL syntax (in fact, quantifiers, negations, and dis-
junctive effect conditions are handled this way already by our current code). Of course, such a compilation process
(in particular bringing formulas into DNF) is worst-case exponential and may be prohibitively costly. In classical
planning, with some simple optimizations (detecting static predicates, e.g.) the compilation is usually manageable in
practice. Whether the same holds true in conformant planning has to be empirically verified.

In a work effort we have already (largely) completed, we extended Conformant-FF to contingent planning, i.e. to
handle observations, and to produce plans with branches depending on the observed properties [28]. In the long term,
we plan to extend Conformant-FF into a probabilistic planner.
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Appendix A. Proofs

This appendix provides the full proofs to (as well as some discussions related to) the theorems contained in Sec-
tion 4.

We first show that deciding conformant plan existence with empty delete lists is co-NP-complete, given one as-
sumes the generous action execution semantics, i.e., drops the requirement that the actions in the plan have to be
applicable at their point of execution no matter what initial world one starts from. (Remember that in the generous se-
mantics, a non-applicable action does not change the world state, while in the non-generous semantics a non-applicable
action leads into an undefined world state.)

Theorem 1 (A+-complexity). Given a conformant task (A,I,G) where the delete lists of all effects are empty. De-
ciding whether there exists a generous plan for (A,I,G) is co-NP-complete.

Proof. Hardness follows directly from Proposition 1. We show membership by constructing a propositional CNF
formula φ (of polynomial size) so that φ is unsatisfiable iff there exists a generous plan for (A,I,G). The idea behind
the construction is to encode the semantics of executing all actions in parallel m times, where m is the number of
distinct conditional effects in the task. We first explain the construction of the formula φ, then we argue why no more
than m parallel action steps are needed to achieve the goal, if that is possible.
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The formula φ is similar to the formulas φ(act) introduced in Section 3 to encode the semantics of action sequences.
We use a time index to differentiate between values of propositions at different points along the hypothetical execution
of the parallel action steps. First, as before φ contains I indexed with time 0 (i.e., for each clause l1 ∨ · · · ∨ lk ∈ I we
add l1(0) ∨ · · · ∨ lk(0) into φ). Then, for all 0 � t < m, for all actions a with precondition pre(a) = {p1, . . . , pk}, for
all effects e ∈ E(a) with condition con(e) = {c1, . . . , cl}, and for each p ∈ add(e), we insert the clause ¬p1(t)∨ · · · ∨
¬pk(t)∨¬c1(t)∨· · ·∨¬cl(t)∨p(t +1), i.e. the implication p1(t)∧· · ·∧pk(t)∧c1(t)∧· · ·∧cl(t) → p(t +1). Also,
for all 0 � t < m, and for all propositions p, we insert the clause ¬p(t)∨p(t +1), i.e. the implication p(t) → p(t +1).
In the absence of delete effects, these clauses obviously capture the semantics of applying all actions m times in
parallel (with a generous execution model), except that one can make a proposition p(t + 1) true “without a reason”
because we have not included any clauses that force p to stay false if it was false at t and was not added by any action
effect. But it is also possible to let p stay false in this latter case. We now, finally, add the clause ¬g1(m)∨· · ·∨¬gn(m)

into φ where G = {g1, . . . , gn}. The overall formula is then unsatisfiable iff, from every possible initial world state,
applying all actions in parallel m times forces the goals to be true.

If we fix any possible initial world state I , then no plan needs more than m steps to achieve G. This is simply
because, without delete lists, if an action application does not result in the application of any conditional effects that
have not already been applied earlier in the action sequence, then the action can be skipped because it does not add
any new propositions to the world state it is executed in. Now, say the action sequence act is a generous plan for
(A,I,G). Then, for any possible initial world state I ∈ 2I , act contains a subsequence act′ so that executing act′ in I

achieves G. With the above, we can assume that the length of act′ is at most m. This means that act′ is contained
in the m parallel action steps encoded in φ, so if one sets the t = 0 variables in φ to the values given by I then one
obtains a contradiction to the goals-false clause at m. It follows that, if there is a generous plan for (A,I,G), then φ

is unsatisfiable. The other way around, if φ is unsatisfiable then obviously a generous plan is to apply all actions in
sequence, m times iteratively. This concludes the proof. �

The construction in the proof does not work if one assumes a non-generous execution semantics of actions, be-
cause in this case one cannot easily model a “parallel” execution of all actions. The formula φ in the proof assumes
that, at plan execution time, non-applicable actions in the parallel execution do not harm the plan. More formally,
unsatisfiability of φ does not imply that there is a non-generous plan.

We now prove that the CRPG algorithm from Fig. 2 works as required. We use the following notation. Given an
action sequence act = 〈a−n, . . . , a−1〉, and a CRPG built for act up to proposition layer m, for any t with −n � t < m

we denote by act-CRPG(t) the action sequence that consists of all action layers A(−n), . . . ,A(t) in an arbitrary
linearization; for t = −n − 1, the action sequence is assumed empty.

We first prove a lemma containing the main technical argument. Before reading the proof, recall Section 4.2 and
Fig. 2. In particular, remember that the action layers contain the actions in their relaxed form (by a relaxation func-
tion |+1 ), i.e. without delete lists and with all but one of the effect conditions removed. The prove is not overly deep,
but a little complicated due to the many details that need to be taken into account.

Lemma 1. Given a conformant task (A,I,G), an executable action sequence act, and a relaxation function |+1
for A. For all proposition layers t built by build-CRPG(act,A,I,G, |+1 ), and for all propositions p, p is known after
act-CRPG(t − 1) iff p ∈ P(t).

Proof. Because act is executable, act|+1 also has that property, i.e., when executing act|+1 in any initial world state I ∈
2I , the preconditions of the actions are true at the respective points of execution. We prove the following properties,
for all propositions p and for all −n � t < m, by induction over t .

(A) For any initial world state I ∈ 2I , p is true after executing act-CRPG(t − 1) in I iff either
(1) there exist a ∈ A(t − 1) and e ∈ E(a) s.t. p ∈ add(e) and con(e) ∈ P(t − 1), or
(2) there exists l ∈ Impleafs(p(t)) s.t. l ∈ I .

(B) p is known after act-CRPG(t − 1) iff p ∈ P(t).
(C) p is unknown after act-CRPG(t − 1) iff p ∈ uP (t).
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Say the length of act is n. The base case, t = −n, is trivially true for all three properties. Assume the properties hold
true for some proposition layer t − 1 � −n. Assume build-CRPG(act,A,I,G, |+1 ) builds the next proposition layer,
time step t . We show that then the properties hold for that layer, too. We consider the three properties from top to
bottom.

Property (A), from left to right. Say p is true after act-CRPG(t − 1). Then p is added by an occurring effect e

of an action a at layer t − 1. That is, we have a ∈ A(t − 1) and e ∈ E(a) s.t. p ∈ add(e), and con(e) is true after
act-CRPG(t − 2). If there is one such pair a and e s.t. con(e) ∈ P(t − 1), then property (A)(1) is satisfied and we are
done. Otherwise, let a and e be one pair as above. We can conclude two things about a and e:

• First, consider the induction hypothesis on property (A) for con(e) and act-CRPG(t − 2). Because con(e) /∈
P(t − 1), property (A)(1) does not hold. Thus property (A)(2) must hold, i.e. there exists l ∈ Impleafs(con(e)(t −
1)) s.t. l ∈ I .

• Second, consider the induction hypothesis on property (B) for con(e) and act-CRPG(t − 2). Because con(e) /∈
P(t − 1), con(e) is not known after act-CRPG(t − 2). But con(e) is true after act-CRPG(t − 2), so we have
that con(e) is unknown after act-CRPG(t − 2). We can now apply the induction hypothesis on property (C) for
con(e) and act-CRPG(t − 2), and we get that con(e) ∈ uP (t − 1). Therefore, by construction of the build-CRPG
algorithm, there is an edge (con(e)(t − 1),p(t)) ∈ Imp.

With l ∈ Impleafs(con(e)(t −1)) and (con(e)(t −1),p(t)) ∈ Imp we have l ∈ Impleafs(p(t)), so property (A)(2) holds
for p and act-CRPG(t − 1), and we are done.

Property (A), from right to left. We first prove that property (A)(1) implies truth of p after act-CRPG(t − 1), then
we do the same for property (A)(2).

• Case (1). Say there exist a ∈ A(t − 1) and e ∈ E(a) s.t. p ∈ add(e) and con(e) ∈ P(t − 1). First, observe that the
preconditions pre(a) of a are true after act-CRPG(t − 2). If t − 1 � 0, this follows from induction hypothesis
on property (B) for (all) pre(a) and act-CRPG(t − 2). If t − 1 < 0, i.e. if a is one of the actions in the sequence
act leading to our search state, then the build-CRPG algorithm imposed no restriction on a’s preconditions. But
act is executable by prerequisite, and with the argument given at the top of this proof we have that pre(a) is
true at the point of a’s execution, i.e., after act-CRPG(t − 2). So a is applicable. By induction hypothesis on
property (B) for con(e) and act-CRPG(t − 2), we have that con(e) is true after act-CRPG(t − 2). So p is true
after act-CRPG(t − 1), and we are done.

• Case (2). Say there exists l ∈ Impleafs(p(t)) s.t. l ∈ I . Going one step backwards over the edges in Imp, we
then get that there exists a p′ with (p′(t − 1),p(t)) ∈ Imp and l ∈ Impleafs(p′(t − 1)). By induction hypothesis
on property (A) for p′ and act-CRPG(t − 2), p′ is true after act-CRPG(t − 2). Now, let a and e be the action
and effect responsible for the edge (p′(t − 1),p(t)) ∈ Imp, i.e. a ∈ A(t − 1) and e ∈ E(a) with p ∈ add(e) and
con(e) = p′. With the same arguments as above in case (1), we have that pre(a) is true after act-CRPG(t − 2).
Since we have already shown that con(e) = p is also true after act-CRPG(t − 2), it follows that p is true after
act-CRPG(t − 1), and we are done.

Property (B). We prove this by equivalently transforming the left hand side of the property to the right hand side
of the property. We first give the sequence of transformation steps, then we explain why these steps are valid.

(a) p is known after act-CRPG(t − 1) ⇔
(b) For all I ∈ 2I , p is true after executing act-CRPG(t − 1) in I ⇔
(c) For all I ∈ 2I , either property (A)(1) holds for p or property (A)(2) holds for p ⇔
(d) Either property (A)(1) holds for p, or for all I ∈ 2I property (A)(2) holds for p ⇔
(e) Either property (A)(1) holds for p, or I → ∨

l∈Impleafs(p(t)) l ⇔
(f) p ∈ P(t)

The step from (a) to (b) just inserts the definition of known propositions. The step from (b) to (c) is valid because
we have already proved property (A) for p and act-CRPG(t − 1). Note that, at this point, we need the induction
hypothesis as used to prove property (A). The step from (c) to (d) is valid because property (A)(1) does not depend
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on I . The step from (d) to (e) is valid because there is a tree leaf l in every initial world state iff the initial formula
implies the disjunction of the leafs. The step from (e) to (f) is valid by construction of the build-CRPG algorithm: (e) is
the precise condition under which the algorithm inserts p into P(t).

Property (C), from left to right. Because p is unknown after act-CRPG(t − 1), there exists I ∈ 2I s.t. p is true after
act-CRPG(t − 1). We already proved property (A) for p and act-CRPG(t − 1), so we get that either property (A)(1)
or property (A)(2) holds for p and I . We show below that

(∗) assuming property (A)(1) leads to a contradiction.

So property (A)(2) must hold. That is, there exists l ∈ Impleafs(p(t)) s.t. l ∈ I . This implies, in particular, that there
exists an edge (p′(t − 1),p(t)) ∈ Imp. By construction of the build-CRPG algorithm, this implies that either p ∈
uP (t), or p ∈ P(t). (The latter can be the case if p was inferred due to I → ∨

l∈Impleafs(p(t)) l.) But by the already
proved property (B) for p and act-CRPG(t − 1), we have that p /∈ P(t), since it would otherwise be known after
act-CRPG(t − 1). It follows that p ∈ uP (t − 1), and we are done.

It remains to show (∗). We have that p is unknown after act-CRPG(t − 1), and we assume that property (A)(1)
holds for p and act-CRPG(t −1). That is, there exist a ∈ A(t −1) and e ∈ E(a) s.t. p ∈ add(e) and con(e) ∈ P(t −1).
With exactly the same arguments as given above in the right-to-left proof of Property (A), case (1), we can show that a

will be applicable, at its point of execution in act-CRPG(t − 1), from every initial world state. Further, with induction
hypothesis on property (B) for con(e) and act-CRPG(t − 2), we have that con(e) is known after act-CRPG(t − 2). It
follows that p is known after act-CRPG(t − 1), in contradiction. This concludes the argument.

Property (C), from right to left. If p ∈ uP (t) then, by construction of the build-CRPG algorithm, it follows that
there exists a proposition p′ ∈ uP (t − 1) with an edge (p′(t − 1),p(t)) ∈ Imp. Let a and e be the action and effect
responsible for the edge (p′(t −1),p(t)), i.e., a ∈ A(t −1), e ∈ E(a), p ∈ add(e), con(e) = p′. Observe that a will be
applicable, at its point of execution in act-CRPG(t − 1), when starting from any initial world state: again, this follows
by exactly the same arguments as given above in the right-to-left proof of Property (A), case (1). Now, observe that, by
induction hypothesis on property (C) for p′ and act-CRPG(t − 2), p′ is unknown after act-CRPG(t − 2). This means
in particular that there exists I ∈ 2I s.t. p′ is true after executing act-CRPG(t − 2) in I . With applicability of a, it
follows that p is true after executing act-CRPG(t −1) in I . Thus p is either known or unknown after act-CRPG(t −1).
Assume p is known after act-CRPG(t − 1). Then, by the already proved property (B) for p and act-CRPG(t − 1), we
get p ∈ P(t). But, by construction of the build-CRPG algorithm, P(t)∩uP (t) = ∅, in contradiction to our prerequisite
p ∈ uP (t). It follows that p is unknown after act-CRPG(t − 1). �

Next, we consider the termination criterion in Fig. 2, i.e. the criterion that makes the CRPG algorithm return
FALSE. The criterion asks if, in a time step t just built, the sets of known and unknown propositions, as well as
the reachable leafs of the Imp tree for the latter propositions, have stayed the same from layer t to layer t + 1. It is
relatively easy to see that, in this case, the same would hold true at all future time steps t ′ > t : if there was progress in
the future then there would also be some progress from t to t + 1 already.

Lemma 2. Given a conformant task (A,I,G), an action sequence act, and a relaxation function |+1 for A. If, for
proposition layers t and t +1 built by build-CRPG(act,A,I,G, |+1 ), it holds that P(t +1) = P(t), uP (t +1) = uP (t),
and ∀p ∈ uP (t + 1): Impleafs(p(t + 1)) = Impleafs(p(t)), then the same conditions would hold for layers t + 1 and
t + 2.

Proof. Assume build-CRPG(act,A,I,G, |+1 ) would not return FALSE in iteration t , and proceed to iteration t + 1.
With P(t +1) = P(t), A(t +1) = A(t) would hold. With that, with P(t +1) = P(t), and with uP (t +1) = uP (t), the
first for-loop in the call to build-timestep(t +1,A(t +1)) would do exactly the same things as in the previous iteration.
Consider the second for-loop in the call to build-timestep(t + 1,A(t + 1)). It proceeds over the same propositions p

as in iteration t . We now show that, for all these p, Impleafs(p(t + 2)) = Impleafs(p(t + 1)), which then concludes
the argument.

We have Impleafs(p(t + 2)) ⊇ Impleafs(p(t + 1)) due to the NOOP action. To see the opposite direction, say we
have a proposition l with l ∈ Impleafs(p(t + 2)). Then the path of Imp edges from l to p(t + 2) goes through an edge



J. Hoffmann, R.I. Brafman / Artificial Intelligence 170 (2006) 507–541 539
(p′(t + 1),p(t + 2)) ∈ Imp. Obviously, we have l ∈ Impleafs(p′(t + 1)). Now, we can show that the same edge and
relation to l exist one step earlier in the CRPG.

(1) Observe that p′ ∈ uP (t + 1) – if p′ was in P(t + 1), then p would be in P(t + 2).
(2) Because A(t + 1) = A(t), the action a ∈ A(t + 1) responsible for the edge (p′(t + 1),p(t + 2)) also occurs

in A(t), yielding the edge (p′(t),p(t + 1)) ∈ Imp.
(3) With p′ ∈ uP (t + 1), we have Impleafs(p′(t + 1)) = Impleafs(p′(t)). This yields l ∈ Impleafs(p′(t)).

With l ∈ Impleafs(p′(t)) and (p′(t),p(t + 1)) ∈ Imp, we get l ∈ Impleafs(p(t + 1)), and are done. �
As a side remark, note that we don’t need to postulate executability of act for Lemma 2 to hold. Lemmas 1 and 2

together allow the conclusion that the CRPG algorithm is complete, i.e., returns FALSE only if there is no relaxed
plan.

Theorem 2 (CRPG-completeness). Given a conformant task (A,I,G), an executable action sequence act, and a re-
laxation function |+1 for A. If build-CRPG(act,A,I,G, |+1 ) returns FALSE then there is no relaxed plan for (A,I,G)

that starts with the sequence act.

Proof. Say act = 〈a−n, . . . , a−1〉. Say 〈a−n, . . . , a−1, a0, . . . , am−1〉 is a relaxed plan for (A,I,G). We prove below
that

(∗∗) if we let the algorithm run until iteration m, then G ⊆ P(m) holds.

Once this is shown, we can argue as follows. If the algorithm returns FALSE then it does so before reaching iteration m,
i.e. in iteration t < m, with G �⊆ P(t). By Lemma 2 all future iterations t ′ > t have, in particular, P(t ′) = P(t). So we
get P(m) = P(t), in contradiction with G ⊆ P(m).

It remains to prove (∗∗). Denote, for −n � t � m, by P |rp(t) the set of propositions that are known after
〈a−n, . . . , a−1, a0, . . . , at−1〉|+1 . We show by a simple induction over t that, for all t , P(t) ⊇ P |rp(t). With t = m,
this suffices because, since 〈a−n, . . . , a−1, a0, . . . , am−1〉 is a relaxed plan, the goals are contained in P |rp(m).

Base argument, t = −n. Then 〈a−n, . . . , a−1, a0, . . . , at−1〉 is empty and the claim is obvious.
Inductive argument, from t − 1 ⇒ t . First, observe that at−1 ∈ A(t − 1). If t − 1 < 0, then this is obvious by

construction of the build-CRPG algorithm. If t − 1 � 0 then at−1 ∈ A(t − 1) because pre(at−1) ⊆ P |rp(t − 1) (the
actions in the relaxed plan must be applicable), and P |rp(t − 1) ⊆ P(t − 1) (induction hypothesis). Thus we have that
〈a−n, . . . , a−1, a0, . . . , at−1〉|+1 is a sub-sequence of act-CRPG(t − 1). But with that, since the relaxation ignores the
delete lists, P |rp(t) is a subset of the propositions that are known after act-CRPG(t −1). The latter set of propositions
is, by Lemma 1, equal to P(t). This concludes the argument. �

It is relatively easy to see that the actions selected by the extract-CRPlan procedure do indeed form a relaxed plan
for the respective belief state.

Theorem 3 (CRPG-soundness). Given a conformant task (A,I,G), an executable action sequence act, and a relax-
ation function |+1 for A, s.t. build-CRPG(act,A,I,G, |+1 ) returns TRUE in iteration m. Let A(0)s, . . . ,A(m − 1)s be
the actions selected from A(0), . . . ,A(m − 1) by extract-CRPlan(CRPG(act,A,I,G, |+1 ),G). Then act|+1 concate-
nated with A(0)s, . . . ,A(m − 1)s in an arbitrary linearization is a plan for (A|+1 ,I,G).

Proof. First, observe that no errors occur in the execution of extract-CRPlan, due to the way the CRPG is computed.
During the backwards loop over t , for all g ∈ G(t), by construction of extract-CRPlan we have g ∈ P(t). So by
construction of build-CRPG either we have ∃a ∈ A(t − 1), e ∈ E(a), con(e) ∈ P(t − 1), g ∈ add(e), or we have I →∨

l∈Impleafs(g(t)) l. Also, during the loop, for all actions a ∈ A(t), by construction of build-CRPG we have that all of a’s
preconditions are contained in P(t) and thus in some P(t ′), t ′ � t .

Denote, for 0 � t < m, by act-CRPG(t)s the concatenation of act|+1 with A(0)s, . . . ,A(t)s in an arbitrary lineariza-
tion. We prove that, for any fact g that is made a sub-goal at time t (0 < t � m) during the execution of extract-CRPlan,
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g is known after act-CRPG(t − 1)s . This shows the claim: the goals are known after act-CRPG(m − 1)s . The proof
proceeds by induction over t . Before we start, note that with P(t − 1) ⊆ P(t) for all t (due to the NOOP action), we
have that all p that are contained in a set P on which sub-goal is called, but for which t0 � 0, are contained in P(0).
With Lemma 1 we then have that all these p are known after act|+1 .

Base argument, t = 1. We distinguish two cases.

• First case, say there exist a ∈ A(0), e ∈ E(a), con(e) ∈ P(0), g ∈ add(e). Then a ∈ A(0)s for one such a and e,
and because, as argued above, a’s preconditions are known after act|+1 , and con(e) is known after act|+1 , we are
done.

• In the other case, actions a were selected from A(0) for all effects e that were responsible for an edge in a path
from l(−n), l ∈ L, to g(1), where I → ∨

l∈L l. Let I be an initial world state, I ∈ 2I . Then l ∈ I for some l ∈ L.
There is a path in Imp from l(−n) to g(1). For all effects responsible for an edge on that path, the respective
action a is in act-CRPG(0)s . Because act is executable by prerequisite, and because pre(a) ⊆ P(0) for a ∈ A(0),
all actions are applicable at their point of execution in act-CRPG(0)s . By construction of Imp, and because l ∈ I ,
it follows that all effects on the path from l(−n) to g(1) occur. So g is true after executing act-CRPG(0)s in I .
Since this holds for all I ∈ 2I , we are done.

Inductive argument, t − 1 ⇒ t . The proof is the same as above for the base argument, except that now we can and
must use the induction hypothesis to see that the preconditions of the selected actions a, as well as (if that applies) the
effect condition con(e)—which are all made sub-goals at layers t ′ < t—will be true at the point of execution of a in
act-CRPG(t − 1)s . In more detail, say g was made a sub-goal at t .

• First case, say there exist a ∈ A(t − 1), e ∈ E(a), con(e) ∈ P(t − 1), g ∈ add(e). Then a ∈ A(t − 1)s for one
such a and e. By construction of extract-CRPlan, pre(a) and con(a) were made sub-goals at layers t ′ � t − 1. By
induction hypothesis, these propositions are thus known after the respective action sequences act-CRPG(t ′ − 1)s .
So they are also known after the longer sequence act-CRPG(t − 2)s . It follows that a is applicable when executed
in act-CRPG(t − 1)s , and that e occurs. So, as required, g is known after act-CRPG(t − 1)s .

• In the other case, actions a were selected from A(0), . . . ,A(t − 1) for all effects e that were responsible for an
edge in a path from l(−n), l ∈ L, to g(t), where I → ∨

l∈L l. Let I ∈ 2I , and l ∈ I ∩ L. There is a path in Imp
from l(−n) to g(t). For all effects responsible for an edge on that path, the respective action a is in act-CRPG(t −
1)s . Say a is selected at time t ′ (t ′ � t −1 holds). By construction of extract-CRPlan, a’s preconditions were made
sub-goals at layers t ′′ � t ′, and, as above in the first case, by induction hypothesis we know that a is applicable
when executing act-CRPG(t − 1)s . With l ∈ I the effects on the path from l(−n) to g(t) will occur, giving us that
g is be true after act-CRPG(0)s . This holds for all I ∈ 2I , and we are done. �
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