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Abstract
Justifying a plan to a user requires answering ques-
tions about the space of possible plans. Recent
work introduced a framework for doing so via plan-
property dependencies, where plan properties p are
Boolean functions on plans, and p entails q if all
plans that satisfy p also satisfy q. We extend this
work in two ways. First, we introduce new algo-
rithms for computing plan-property dependencies,
leveraging symbolic search and devising pruning
methods for this purpose. Second, while the prop-
erties p were previously limited to goal facts and
so-called action-set (AS) properties, here we extend
them to LTL. Our new algorithms vastly outper-
form the previous ones, and our methods for LTL
cause little overhead on AS properties.

1 Introduction
As has been pointed out by Smith [2012] for space applica-
tions, the goal preferences for a planning task may be difficult
to elicitate, calling for planning as an iterative process that
suggests plan candidates for human inspection. Arguably this
applies, for example, also to variants of production planning
(Industry 4.0) and robot-aided disaster recovery. A key step
in such a process is a variant of plan explanation answering
user questions of the form “Why does the plan π you suggest
not satisfy my preference p?”. Eifler et al. [2020] recently
introduced a framework addressing this explanation problem
via plan-property entailments.

A plan property p is a Boolean function on plans, and p
entails q if all plans that satisfy p also satisfy q. The an-
swer to the above question could then be “Because achiev-
ing p would necessitate to either forego p′ or use > 100 en-
ergy units”. This is a form of contrastive explanation [Miller,
2019]. Some previous works [Smith, 2012; Fox et al., 2017;
Cashmore et al., 2019; Krarup et al., 2019] suggested to an-
swer the question by comparing π to an alternative plan π′

that satisfies p. In Eifler et al.’s framework, the answer con-
sists instead of the properties shared by all possible such π′.

Eifler et al. [2020] (henceforth: “Eif20”) assume a given
set P of plan properties, and address oversubscription plan-
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ning (OSP) [Smith, 2004; Domshlak and Mirkis, 2015] where
not all of P can be satisfied. They identify all exclusion de-
pendencies of the form

∧
p∈X p⇒ ¬

∧
p∈Y p where X,Y ⊆

P . Such dependencies are naturally suited to the desired Q/A
pattern: “Why does the plan not satisfy the properties in X?”
“Because then we would have to forego a property in Y ”.

Eif20 compile each plan property into a goal fact g. As∧
g∈X g entails ¬

∧
g∈Y g iff

∧
g∈X∪Y g is unsolvable, and as

smaller property sets are stronger on each side of the entail-
ment, the algorithmic problem thus boils down to computing
all minimal unsolvable goal subsets (MUGS).

Eif20 compute MUGS through a meta-search over goal
subsets G, where each search node invokes a planner to de-
cide solvability of G. They devise information flow across
nodes through nogood transfer. Performance is reasonable
in international planning competition (IPC) benchmarks con-
straining plan cost as in OSP [Katz et al., 2019].

Our first contribution are two new algorithms for MUGS
computation, as follows. (1) Run a symbolic search once to
obtain a BDD representing the reachable state space, serv-
ing to implement the solvability tests efficiently. (2) Run a
single explicit state-space search maintaining the set Gcurr of
solvable goal subsets found so far, adapting previous pruning
and nogood learning techniques [Steinmetz and Hoffmann,
2017b] to detect states from which Gcurr cannot be improved.
Both (1) and (2) vastly outperform Eif20’s methods.

Interestingly, we also obtain highly competitive results in
a basic form of OSP, namely finding a largest solvable goal
subset, which is solved as a side effect of finding all MUGS.
Both (1) and (2) significantly outperform the most recent OSP
solver [Katz et al., 2019] on that problem.

Our second contribution consists in extending Eif20’s
framework to deal with more powerful plan properties. Eif20
consider goal facts as a simple canonical form of plan proper-
ties, and consider what they call action-set (AS) properties
as a more complex form. AS properties pφ are defined by a
propositional formula φ over atoms {A1, . . . , An}, with Ai
being true iff the plan uses at least one action a ∈ Ai. Eif20
devise a simple compilation of AS properties into goal facts.

Here, we tackle plan properties formulated in linear tem-
poral logic, specifically LTLf interpreted over finite traces
[Baier et al., 2009]. This strictly generalizes AS proper-
ties, and covers all but one of the preferences formulatable
in PDDL3 [Gerevini et al., 2009]. To compile LTLf into



goal facts (and thus stay within Eif20’s algorithmic frame-
work), we adopt previous techniques, producing the property
automaton [Baier and McIlraith, 2006; Baier et al., 2009] and
compiling that automaton into the planning task [Edelkamp,
2006]. We empirically evaluate this method through exper-
iments on a collection of IPC benchmarks extended with
AS properties by Eif20. Formulating the same properties in
LTLf , we find that our more general solution causes little
overhead. Formulating new LTLf plan properties beyond AS
properties, we get worse but still reasonable scaling behavior.

Section 2 gives background on the planning formalism and
Eif20’s framework. Sections 3 and 4 describe our new algo-
rithms for computing MUGS, Section 5 evaluates them. Sec-
tion 6 describes our work on LTLf . Some related work is
discussed near the end of the paper in Section 7, to not inter-
rupt the text flow. Section 8 concludes the paper.

2 Background
2.1 Oversubscription Planning
We consider a finite-domain variable variant of oversubscrip-
tion planning (OSP) [Smith, 2004; Domshlak and Mirkis,
2015]. An OSP task is a tuple τ = (V,A, c, I,Ghard, Gsoft,
b) where V is the set of variables, A is the set of actions,
c : A→ R+

0 is the action cost function, I is the initial state,
Ghard (Gsoft) is the hard (soft) goal, and b ∈ R+

0 is the cost
bound. A state is a complete assignment to V ; Ghard and
Gsoft are partial assignments to V , defined on disjoint sets of
variables; each action a ∈ A has a precondition prea and
an effect eff a, both partial assignments to V . We refer to
variable-value pairs v = d as facts, and we identify partial
variable assignments with sets of facts. An action a is appli-
cable in a state s if prea ⊆ s. The outcome state s[[a]] is like
s except that s[[a]](v) = eff a(v) for those v on which eff a is
defined. The outcome state of an iteratively applicable action
sequence π is denoted by s[[π]]. A plan is an action sequence
π whose summed-up cost is ≤ b and where Ghard ⊆ I[[π]].

We follow Eif20 in not defining a plan utility overGsoft. In-
stead,Gsoft is a set of plan properties – including more general
plan properties compiled into goal facts – and the analysis we
provide identifies dependencies between these plan proper-
ties. The underlying assumption is that the user’s preferences
over Gsoft are difficult to elicitate, and planning is an iterative
process as described by Smith [2012].

We will also consider the basic OSP case where each soft
goal yields the same positive reward, so that their number
should be maximized. A plan π is cardinality-optimal if
Gsoft ∩ I[[π]] is maximal among all plans.

As an example, consider the OSP task illustrated in Fig-
ure 1, based on the IPC NoMystery domain where packages
must be transported subject to limited fuel. The figure de-
picts the initial locations of trucks and packages (red), the
goal locations of packages (green), and the amount of fuel
consumed at each road connection. Truck T0 initially has 5
fuel units, truck T1 has 7. In addition to package location
goals which are hard goals Ghard, we consider soft goals Gsoft

over more general plan properties. Examples that can be for-
mulated as action-set (AS) properties as per Eif20 are “use
the road connecting Lj and Lk, use(Ti, Lj , Lk)”, “don’t use
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Figure 1: An illustrative NoMystery example.

the road connecting Lj and Lk, not use(Ti, Lj , Lk)”, and
“deliver two packages with the same truck same(Pi, Pj)”.

2.2 Eifler et al.’s Framework
Eifler et al. [2020] (Eif20) introduce a framework for plan-
property dependency analysis in OSP tasks, and algorithms
for a specific instantiation of that framework. Here we con-
sider only that instantiation, simplifying Eif20’s concepts ac-
cordingly. We next outline the definitions, as well as Eif20’s
algorithms, so far as needed to understand our contribution.

Assume an OSP task τ = (V,A, c, I,Ghard, Gsoft, b). A
plan property is, in general, any function p mapping action
sequences π in τ to Boolean values. Like Eif20’s implemen-
tation, here we only consider p that can be compiled into goal
facts, and we assume that the set of plan properties is repre-
sented by the set of soft goals Gsoft. That is, we assume that a
plan π satisfies a property p of interest iff the corresponding
goal fact g ∈ Gsoft is true in I[[π]]. We are interested in con-
junctions

∧
g∈X g of such plan properties, and specifically in

exclusion dependencies where
∧
g∈X g “entails” ¬

∧
g∈Y g.

Entailment here is intended as entailment in the space of
plans. Clearly, goals will hardly entail other goals in the stan-
dard logical sense (in particular, goal facts never entail each
other). However, it is often the case that all plans which sat-
isfy X cannot satisfy Y . We denote by Π the set of plans
for τ . We say that π ∈ Π satisfies a formula φ over Gsoft,
written π |= φ, if φ evaluates to true under the truth value
assignment where g ∈ Gsoft is true iff g ∈ I[[π]]. We denote
byMΠ(φ) := {π | π ∈ Π, π |= φ} the subset of plans that
satisfy φ. We say that φ Π-entails ψ ifMΠ(φ) ⊆MΠ(ψ).

Applied to exclusion dependencies, this means that∧
g∈X g Π-entails ¬

∧
g∈Y g if all action sequences in τ

whose cost is within the bound b, that achieve Ghard, and that
achieve all g ∈ X , do not achieve at least one g ∈ Y .

Our problem now is to compute all exclusion dependen-
cies over Gsoft. This corresponds to preparing, offline before
iterative planning begins, answers to all questions of the form
“Why does the plan not satisfy the properties in X?”. To this
end, observe that

∧
g∈X g Π-entails ¬

∧
g∈Y g iff

∧
g∈X∪Y g

is unsolvable in τ . Observe further that, in this case, the same
is true for every X ′ ⊇ X and Y ′ ⊇ Y , i. e., the exclusion
dependency is strongest for set-inclusion minimal X and Y .
Given these observations, the problem boils down to comput-
ing all minimal unsolvable goal subsets (MUGS): all sets
G ⊆ Gsoft where G cannot be achieved but every G′ ( G
can. We will refer to this problem as AllMUGS. 1

1Eif20 also define an online problem, addressing a specific user
question asked during iterative planning. This means to solve All-
MUGS in the modified task where X is moved from Gsoft to Ghard.



Eif20 solve AllMUGS through a meta-search over soft-
goal subsets G, either starting with Gsoft and working down-
wards (systematic weakening, SysW), or starting with ∅
and working upwards (systematic strengthening, SysS). Each
node in the meta-search invokes a planner to decide solvabil-
ity. Towards efficiency, Eif20 employ recent nogood learn-
ing methods in the planner calls [Steinmetz and Hoffmann,
2017b; Steinmetz and Hoffmann, 2017a], and transfer the
learned nogoods across nodes in the meta-search. This is al-
ways possible in SysS, and is possible in SysW whenever the
goals a nogood depends on are still present.

In our example, say we consider the plan properties
1 : use(T1, L0, L4), 2 : not use(T0, L0, L1), 3 :
not use(T1, L1, L2), and 4 : same(P0, P1). Then the
MUGS are {2, 3} and {1, 2, 4}. So, for example, the answer
to the user question “Why does the plan not drive T1 from L0

to L4?” is “Because then either T0 has to drive from L0 to
L1, or P0 and P1 cannot be transported with the same truck.”

3 Solving AllMUGS with Symbolic Search
The planner calls in Eif20’s SysW and SysS meta-searches
all solve the same planning task, except for the changing goal
subset. Eif20 leverage this connection for nogood transfer,
thus avoiding some redundant work. However, as all the solv-
able goal subsets can be read off one and the same state space,
the redundant work can be avoided altogether. We introduce
two methods to this end, based on (1) computing a BDD that
represents all reachable states (in the present section), respec-
tively (2) a single explicit state-space search maintaining a list
of solvable goal subsets (in the next section).

Symbolic search is a well-known paradigm that uses Bi-
nary Decision Diagrams (BDDs) to compactly represent sets
of states, often using exponentially less memory than their
explicit enumeration. Successor-state generation can be di-
rectly implemented on the BDD representation, via BDD op-
erations whose runtime depends only on the BDD size, not
on the number of states represented. Symbolic search has
been shown to be a powerful tool for state space exhaustion in
model-checking [McMillan, 1993] and planning [Edelkamp
and Kissmann, 2009; Torralba et al., 2017].

Assembling this machinery for our purposes, the main dif-
ference to previous work is that we need to adhere to the cost
bound. To this end, given an OSP task τ = (V,A, c, I,Ghard,
Gsoft, b), we run a symbolic forward uniform-cost search. We
terminate when we reach the cost-bound b, when we reach
a state satifying Ghard ∪ Gsoft, or when all reachable states
have been generated. The result is a BDD, that we denote βτ ,
which represents the set of states reachable in τ .

The BDD βτ can be used to test solvability of each goal G
in SysS and SysW efficiently: 1. produce a BDD βG repre-
senting

∧
g∈G g; 2. conjoin βτ and βG to obtain a BDD for

βτ ∧ βG; and 3. test whether that latter BDD represents the
empty set. Operation 1 takes time linear in |G|, operations 2
and 3 take time linear in the size of βτ times |G|. Given this
fast test, using SysS vs. SysW hardly makes a performance
difference anymore; in our experiments, we use SysS.

Note that, as a side effect, this algorithm solves cardinality-
optimal OSP. A largest solvable goal subset G can be identi-

fied by maintaining flags alongside SysW/SysS. Given such
G, one can easily extract a cardinality-optimal plan from the
BDDs βg produced by symbolic uniform-cost search for each
g-cost value encountered. We implemented this technique as
well, and will show that it yields interesting results.

4 AllMUGS Pruning and Nogood Learning
Our second new AllMUGS algorithm extracts all MUGS
from a single explicit state-space search, exhausting all states
reachable within the cost bound (or when a state is reached
that satisfies Ghard ∪Gsoft). During the exploration, we main-
tain reachability information for goal subsets, namely the set
Gcurr of set-inclusion maximal goal subsets reached so far.
When search terminates, Gcurr contains all maximal solvable
goal subsets. The MUGS can be computed from this by first
extending all G ∈ Gcurr with one more soft-goal fact in all
possible ways, and then keeping the set-inclusion minimal
sets from the outome. We denote the result by MUGS(Gcurr).
Note that, through the computation of Gcurr, the algorithm also
computes cardinality-optimal plans as a side effect.

Pruning To avoid exhausting the entire state space, one
can prune states s from which it is not possible to achieve
“something new”, i. e., from which one cannot reach any
Gnew ⊆ Gsoft with Gnew 6⊆ Gold for any Gold ∈ Gcurr. Ob-
serve that this condition is satisfied iff s cannot reach any
Gnew ∈ MUGS(Gcurr). The question now is how to adopt
known reachability approximations for this purpose.

Assume any admissible classical planning heuristic h. One
can prune a state s with remaining budget bs if (*) for all
Gnew ∈ MUGS(Gcurr), h(s,Ghard ∪ Gnew) > bs. However,
MUGS(Gcurr) may become large, and each call to h may in-
cur a computational cost. So, with the pruning test conducted
on every state during search, implemented naı̈vely this ap-
proach is bound to cause substantial overhead. Here we show
how to implement the approach more effectively for two par-
ticular heuristic functions, namely the critical-path heuristics
hmax [Haslum and Geffner, 2000] and hC [Haslum, 2012].
Both allow to approximate (*) through a single computation
of the heuristic, plus some additional processing:
• In a nutshell, hmax approximates the cost-to-go by the

cost of reaching each fact individually. This allows to
extract, from a single hmax computation, the set P>bs
of facts whose hmax estimate exceeds bs. Then (*) is
entailed if Ghard ∩ P>bs 6= ∅; or if there exists G ∈ Gcurr
such that Gsoft \ P>bs ⊆ G.
• The hC heuristic generalizes hmax by taking into account

the cost to jointly achieve the fact sets (the conjunctions)
contained in the parameter C. From a single hC com-
putation, one can extract the set PC>bs of conjunctions
whose hC estimate exceeds bs. Then (*) is entailed if
PC>bs contains a subset of Ghard, i. e., ex. c ∈ PC>bs with
c ⊆ Ghard; or if, for every Gnew ∈ MUGS(Gcurr), PC>bs
contains a subset of Ghard ∪Gnew.

To make use of hC , we need to obtain the set C of conjunc-
tions to consider. To this end, we extend Steinmetz and Hoff-
mann’s [2017b] nogood learning approach to our context.



AllMUGS Cardinality-Optimal OSP
x = 0.25 x = 0.5 x = 0.75 x = 0.25 x = 0.5 x = 0.75

Domain Eif EifL hmax hC
L Sym Eif EifL hmax hC

L Sym Eif EifL hmax hC
L Sym Katz hmax Sym Katz hmax Sym Katz hmax Sym

Agricola(20) 20 20 20 20 20 13 13 14 16 20 2 1 2 2 19 0 20 20 0 14 20 0 2 19
Airport(50) 25 35 33 34 26 19 21 25 22 22 19 16 24 16 21 28 33 26 24 25 22 22 24 21
Barman(34) 18 15 20 18 25 4 4 11 4 18 4 3 4 0 14 18 20 25 11 11 18 4 4 13
Blocksworld(35) 34 35 35 35 35 23 29 29 30 29 18 26 24 26 22 35 35 35 28 29 29 21 24 22
Childsnack(20) 0 4 2 6 6 0 0 0 0 2 0 0 8 6 2 2 2 6 0 0 2 0 8 2
Data-Network(20) 17 20 20 20 19 14 18 16 18 17 11 17 13 16 13 13 20 19 13 16 17 13 13 13
Depots(22) 12 16 16 16 17 7 9 12 10 12 4 3 7 3 7 16 16 16 11 12 12 7 7 7
Driverlog(18) 15 15 15 15 15 10 12 14 12 14 8 10 12 10 12 15 15 15 13 14 15 10 12 12
Elevators(50) 47 47 50 47 50 43 38 44 40 44 35 27 41 23 43 22 50 50 22 44 44 22 41 43
Floortile(36) 7 8 18 16 16 2 2 6 2 6 2 2 3 2 5 18 18 16 6 6 6 2 3 5
FreeCell(80) 42 76 80 77 76 16 30 38 29 30 14 18 20 18 20 77 80 76 30 38 30 21 20 20
GED(20) 16 16 20 20 16 15 10 20 19 15 10 7 20 10 11 20 20 16 20 20 15 20 20 11
Grid(5) 4 5 5 5 5 3 3 3 4 3 2 3 3 3 2 5 5 5 3 3 3 2 3 2
Gripper(14) 7 5 11 7 9 4 4 7 4 6 4 3 7 3 5 11 11 9 8 7 6 8 7 5
Hiking(20) 15 20 20 20 19 11 16 13 14 16 11 11 11 11 15 19 20 19 14 13 16 13 11 15
Logistics(32) 6 15 10 16 12 3 6 5 7 6 2 3 4 4 5 27 10 12 20 5 6 16 4 5
Miconic(150) 66 66 101 72 105 45 42 68 45 71 41 35 55 39 61 97 101 105 66 68 71 55 55 60
Mprime(35) 35 35 35 35 35 27 35 34 35 34 24 35 31 35 29 35 35 35 27 34 34 24 31 29
Mystery(30) 30 30 30 30 30 25 30 30 30 30 18 30 26 28 26 29 30 28 27 30 28 21 26 26
Nomystery(20) 20 20 20 20 20 10 12 15 13 14 8 8 10 8 12 20 20 20 14 15 14 10 10 12
Openstacks(77) 49 49 63 61 63 47 45 61 53 59 42 42 60 57 52 63 63 63 56 61 59 52 60 52
Org-syn-s(13) 8 8 13 12 9 8 8 13 11 8 7 6 13 8 8 8 13 9 8 13 8 8 13 8
Parcprinter(26) 10 10 24 22 10 10 10 24 18 10 10 10 20 16 10 26 24 10 22 24 10 18 20 10
Parking(40) 12 17 26 21 25 0 1 5 1 5 0 0 0 0 0 25 26 25 5 5 5 0 0 0
Pathways-nn(23) 5 7 6 7 9 4 5 5 5 6 4 4 4 4 5 5 6 9 4 5 6 4 4 5
Pegsol(2) 0 0 2 2 1 0 0 2 2 1 0 0 2 2 1 2 2 1 2 2 1 2 2 1
Pipesworld-nt (50) 41 46 46 46 45 23 25 37 27 31 21 15 24 15 22 45 46 45 30 37 31 23 24 22
Pipesworld-t (50) 23 39 37 40 42 12 18 22 18 25 19 13 16 12 18 33 37 42 20 22 26 16 16 18
PSR-small (50) 48 48 50 50 48 47 47 50 50 47 46 46 50 49 46 50 50 48 50 50 47 50 50 46
Rovers(31) 12 12 17 15 19 7 7 9 7 14 6 5 7 6 14 16 17 19 8 9 14 6 7 14
Satellite(19) 8 12 11 12 15 6 6 7 7 12 4 5 6 6 8 9 11 15 7 7 12 6 6 8
Scanalyzer(40) 9 17 25 23 21 9 9 21 9 9 9 5 15 5 9 26 25 21 21 21 9 21 15 9
Snake(17) 6 7 17 14 7 3 3 14 5 6 3 1 10 2 4 17 17 7 17 14 6 14 10 4
Sokoban(50) 50 50 50 50 50 46 43 50 43 48 40 31 48 31 44 50 50 50 49 50 48 45 48 44
Spider(12) 6 6 12 11 9 5 1 12 4 9 0 0 10 1 4 12 12 9 12 12 9 12 10 4
Storage(30) 18 18 21 20 21 16 16 17 16 17 15 14 16 15 15 20 21 20 17 17 17 15 16 15
Termes(20) 15 11 18 12 20 6 2 14 3 18 0 0 9 1 15 20 18 20 16 14 18 12 9 15
Tetris(17) 8 9 17 11 12 4 3 12 3 8 3 2 8 3 7 17 17 12 14 12 7 11 8 7
Tidybot(40) 40 40 40 40 40 28 31 37 32 38 13 13 26 16 33 40 40 40 38 37 38 32 26 33
TPP(30) 8 9 13 11 12 7 7 8 7 8 6 5 7 6 8 9 13 12 7 8 8 6 7 8
Transport(70) 37 42 43 42 47 34 34 34 34 35 27 23 24 24 31 24 43 46 24 34 35 24 24 31
Trucks(30) 12 14 15 16 19 6 7 9 9 12 5 4 8 4 9 12 15 19 8 9 12 6 8 9
Visitall(14) 13 13 14 14 13 9 10 13 10 10 6 6 13 9 7 14 14 13 14 13 10 13 13 7
Woodworking(35) 23 23 35 29 25 9 9 25 13 9 5 5 15 9 5 25 35 25 12 25 9 10 15 5
Zenotravel(20) 13 13 13 13 14 9 9 12 10 12 8 9 9 9 10 13 13 14 10 12 12 8 9 10

Sum (1517) 907 1026 1189 1123 1152 639 690 917 751 866 522 522 745 573 729 1088 1189 1147 828 917 865 705 745 727
x = 1.0 x = 1.25 x = 1.5

Domain Eif hmax hC
L Sym Eif hmax hC

L Sym Eif hmax hC
L Sym

Blocksworld(400) 140 252 312 339 112 218 215 295 146 205 184 284
Nomystery(400) 239 333 381 396 183 264 207 326 177 225 93 241
Rovers(400) 248 305 400 398 259 303 400 387 268 315 398 352
TPP(400) 274 397 316 400 244 346 236 400 259 327 215 400

Sum (1600) 901 1287 1409 1533 798 1131 1058 1407 850 1072 890 1276

Table 1: Coverage (number of instances solved) on Eif20’s benchmarks: (top) IPC benchmarks modified with a plan-cost bound, (bottom)
benchmarks extended with action-set properties. Cost bounds set to x times the best known plan cost. Top left and bottom coverage for
AllMUGS, top right coverage for cardinality-optimal OSP. “hmax” (“hC

L”) is our explicit-search approach with hmax (hC+nogood learning)
pruning, “Sym” is our symbolic approach. “Eif”/“EifL” are Eif20’s best-performing algorithms: (top) SysS without/with nogood learning,
(bottom) SysW with trap learning. “Katz” is the state-of-the-art OSP solver. Best performance within each cost bound shown in boldface.

Nogood Learning We build on Eifler et al.’s [2020] adapta-
tion of nogood learning to OSP. This algorithm takes as input
a state s with remaining budget bs, and a goal G which is not
achievable from s within bs, but hC(s,G) ≤ bs. The algo-
rithm returns an extended conjunction set C ′ ⊃ C guarantee-
ing that hC

′
(s,G) > bs. Previous works use this algorithm

to refine C (replace it with C ′) whenever a dead-end state s
has been identified, from which the goalG cannot be reached.
Each such update has the potential to generalize to states not
seen so far, and may thus reduce future search effort.

Unlike previous works, our search here has no fixed goal
G. Hence our approach differs in when and how C is refined.
We run a depth-first search. This guarantees that, upon back-
tracking from a state s with remaining budget bs, no Gnew ∈

MUGS(Gcurr) can be achieved from s within bs. When back-
tracking on s, we refine C so that s would be pruned accord-
ing to (*): we find a set of conjunctions C ′ ⊃ C so that
hC

′
(s,Ghard∪Gnew) > bs for all Gnew ∈ MUGS(Gcurr). We

do so by a separate call to Eifler et al.’s refinement method for
each Gnew where the inequality is not already satisfied.

5 Experiments with AllMUGS Algorithms
We implemented our AllMUGS algorithms in Fast Down-
ward [Helmert, 2006], on top of Eif20’s code base, using
the SymBA [Torralba et al., 2014] code for symbolic search.
We use Eif20’s benchmarks, comprising two parts. First, the
classical-planning IPC benchmarks, modified by enforcing a



plan-cost bound. Second, four domains (resource-constrained
planning by Nakhost et al. [2012], plus the Blocksworld) ex-
tended with Gsoft encoding action-set properties, setting the
original goals as Ghard and choosing the cost bound so that
some but not all of Gsoft can be satisfied. All experiments
were run on Intel E5-2660 machines running at 2.20 GHz,
with a time (memory) limit of 30min (4GB).

Table 1 shows coverage results. Our main interest here
is AllMUGS (OSP is included as a side note, discussed be-
low). Clearly, our explicit-state method with hmax (hence-
forth: Exphmax) and our symbolic method (Sym) both out-
class Eif20’s methods.2 Consider first the IPC benchmarks
(top left part of Table 1). Exphmax increases overall coverage
compared to the best previous method by 163 for x = 0.25,
203 for x = 0.5, and 165 for x = 0.75. For Sym, these num-
bers are 126, 152, and 149. Looking at individual domains,
we see that Exphmax and Sym are highly complementary. For
(Eif, EifL, hmax, hCL , Sym) the numbers of IPC domains with
unique best coverage are (0, 1, 12, 1, 11) for x = 0.25, (0,
0, 16, 3, 12) for x = 0.5, and (0, 2, 17, 0, 18) for x = 0.75.
So Eif20’s methods stand out in just 3 cases in total, while
Exphmax and Sym stand out in 45 and 41 cases respectively.

On the benchmarks with AS properties (bottom table in Ta-
ble 1), our new methods outclass Eif20’s methods even more
drastically. Interestingly, now Sym is in the lead by far. This
is due to the smaller sets Gsoft of properties to be analyzed.
Sym is more effective at enumerating large state spaces, but
suffers from the enumeration of goal subsets G ⊆ Gsoft in the
meta-search (SysS/SysW). Explicit search with hC (ExphC)
suffers from the overhead of nogood learning on allGnew, cf.
Section 4. Nevertheless, ExphC stands out in some cases.

Consider finally, as a side remark, cardinality-optimal OSP
(top right in Table 1). “Katz” here is the most recent OSP
solver [Katz et al., 2019]; Sym is extended to output a
cardinality-optimal plan; Exphmax data is repeated for con-
venience. Both our methods have higher overall coverage.

6 LTL Plan Properties
Eif20’s AS properties lack expressivity in that they cannot
capture temporal aspects of plans. Even simple properties
like “P0 should be delivered before P1” cannot be expressed.
Yet temporal properties clearly are natural and relevant for
expressing user preferences, as e. g. in PDDL3 [Gerevini et
al., 2009]. LTL is a canonical language to address this.

We now show how LTL plan properties can be handled in
Eif20’s framework, with little overhead relative to AS prop-
erties. Section 6.1 outlines our compilation, Section 6.2 gives
an example, Section 6.3 summarizes our experiments.

6.1 LTLf and Compilation into Goal Facts
There has been extensive prior work on the compilation of
LTL plan preferences into PDDL [Edelkamp, 2006; Baier and
McIlraith, 2006; Baier et al., 2009; De Giacomo et al., 2014;
Torres and Baier, 2015]. Here we leverage this work, assem-
bling previous methods in a way suiting our purposes.

2Eif/EifL results slightly differ from the ones previously reported
by Eif20 because we fixed a bug in the implementation, but this does
not significantly affect this comparison.

Plans are finite traces, in difference to the infinite traces
assumed in LTL. We follow Baier and McIlraith [2006] in
the solution to this problem. We adopt their LTLf language,
a simple adaption of LTL interpreted over finite traces; and
we use part of their compilation machinery. In LTLf , the
property “P0 should be delivered before P1” can, in the con-
text of our NoMystery example from Figure 1, be defined as
¬at(P1, L0) U at(P0, L4). LTLf is interpreted over states,
but when adding action effects identifying the last action ap-
plied, one can also talk about actions. The atoms Ai in
Eif20’s AS properties are then captured by ♦

∨
a∈Ai

a.
Known compilations of LTL properties into PDDL proceed

in two steps: (1) produce the property automaton, (2) compile
that automaton into additional state variables and actions en-
forcing its execution alternatingly with the actions executed
by the planner. We use Baier and McIlraith’s [2006] tool
for (1), producing an NFA. For (2), we cannot use Baier and
McIlraith’s tool as it relies on PDDL axioms which we do not
support. We use (a re-implementation of) Edelkamp’s [2006]
tool instead. That tool takes as input an NFA and a PDDL
instance, and outputs a modified instance with a goal fact g
that is true at the end of a plan iff the NFA reached an ac-
cepting state. We implemented this on top of Eif20’s frame-
work, in the Fast Downward translator [Helmert, 2009] afer
the grounding step. An important detail is that, as plan prop-
erties are soft goals in our context, we need to continue search
paths even when one of the automata cannot reach an accept-
ing state anymore. Edelkamp [2006] achieves this by addi-
tional actions in the compilation. Instead, we address this ele-
gantly in step (1) by augmenting Baier and McIlraith’s [2006]
output NFA to be complete (a standard operation, adding a
new accepting state reached by non-read input symbols).

6.2 An Example Analysis
To illustrate the kind of analysis afforded by the added capa-
bility to analyze LTLf properties, consider again our NoMys-
tery example from Figure 1. Say we want to analyze the AS
properties 1 : use(T1, L0, L4), 2 : not use(T0, L0, L1), and
3 : not use(T1, L1, L2) in combination with the LTLf prop-
erties 4 : “load P1 only once” and 5 : “deliver P1 before P2”.
Then we produce Gsoft using the compilation for each prop-
erty individually (we can even use the simpler AS-property
compilation for 1–3, as the compilations are compatible). The
MUGS then are {1, 3, 4}, {2, 3}, {3, 4, 5}. So, for example,
the user question “Why is P1 not delivered before P2” can be
answered with “Because then, either P1 must be loaded more
than once, or T1 has to use the road between L1 and L2.”

6.3 Experiments
We now evaluate the performance of LTLf plan-property de-
pendency analysis. We examine scaling behavior over the
number n of properties whose dependencies should be ana-
lyzed. This is relevant to gauge practical feasibility, as the
worst-case number of MUGS is exponential in n. We use
Eif20’s benchmarks featuring AS properties. We focus on
Sym, which scales best on these benchmarks (cf. the bottom
part of Table 1); we briefly discuss ExphC below.

Given the drastically improved performance relative to
Eif20’s algorithms, we had to create larger instances to make



n (#properties)
Domain Encoding 1 2 3 4 5 6 7 8 9 10

AS vs LTLf encoding of AS properties

Blocksworld AS 10 7 6 5 5 3 3 3 3 2
LTLf 10 10 8 4 4 5 5 4 2 2

Nomystery AS 9 8 7 7 8 5 6 7 6 6
LTLf 9 7 5 7 9 6 4 6 6 8

Rovers AS 5 6 7 7 7 7 8 7 7 7
LTLf 7 5 3 5 6 6 6 6 7 7

TPP AS 10 10 9 8 8 8 8 7 7 7
LTLf 10 10 10 10 9 9 8 8 7 8

LTLf properties not expressible as AS properties
Blocksworld 10 10 7 2 3 1 2 0 0 0
Nomystery 4 5 4 2 1 0 0 0 0 0
Rovers 7 4 3 2 1 0 1 1 0 0
TPP 10 10 10 10 9 9 8 9 9 8

Table 2: Sym coverage as a function of the number n of plan prop-
erties whose dependencies must be analyzed (x = 1.0).

interesting observations about scaling in n. To this end, we
increased the number of objects and hard goals up to a size
region within which instances with large n become challeng-
ing for Sym. For each instance, we generated 10 AS prop-
erties and 10 LTLf properties not expressible as AS prop-
erties. Both were based on hand-made schemas instantiated
randomly with concrete objects. The AS-property schemas
are those by Eif20, and talk about use/disuse of road connec-
tions, transportation with the same vehicle, which object is
used to achieve which goal, etc. The LTLf -property schemas
talk about the order in which goals are achieved, the fre-
quency with which actions are used, and which facts are true
together at some point along the plan.

Table 2 shows coverage results. Scaling over n is realized
by fixing an arbitrary order of the 10 properties, and including
them incrementally. We use x = 1.0 for the plan-cost bound;
our results for other values of x are qualitatively similar.

Consider first the top part of Table 2, comparing LTLf
encodings to AS encodings where both are possible. This
serves to evaluate whether the more general LTLf methodol-
ogy causes a computational overhead. In terms of coverage,
the answer here is a clear “no”. There is some variance in
both directions, but nothing of a systematic nature. Figure 2
gives runtime data for a more fine-grained view. AS encod-
ings tend to be faster more frequently. There is variance again
though, and the difference is mostly moderate.

In the bottom part of Table 2, we see that scaling perfor-
mance gets worse beyond AS properties. But the analysis is
still reasonably effective for up to four or five plan properties,
sometimes more. Of course, this depends also on instance
size. Our intances here are slightly smaller than the ones by
Nakhost et al. [2012], and are mid-range (ca. instance 7–13
out of 20) compared to the respective IPC test suites.

As before (bottom part of Table 1), ExphC scales better
than Sym in Rovers. It has coverage 9 or 10 for all values of
n regardless of the property language.

7 Other Related Works
In constraint satisfaction problems, finding a minimum un-
satisfiable core [Chinneck, 2007; Laborie, 2014] is related to
finding a MUGS. Similar problems have been considered in
constraint-based formulations of planning [Laborie and Ghal-
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Figure 2: Sym runtime (s) on instances with AS properties, solved
commonly for AS encoding (x-axis) vs. LTLf encoding (y-axis).

lab, 1995; Yu et al., 2017]. Problems involving some form of
solvability borderline within a lattice of problem variants, like
in Eif20’s SysS and SysW, have a long tradition (e. g. [Reiter,
1987]). In particular, the diagnosis framework by Grastien et
al. [2011; 2012] can cast maximum solvable goal subsets as
preferred diagnoses. Perhaps this approach could profit from
symbolic representations, as our work on AllMUGS here.

Eif20’s framework that we follow up on here aims at plan-
space explanation, which has previously been addressed in
other forms for unsolvable tasks [Göbelbecker et al., 2010;
Sreedharan et al., 2019]. It can also be viewed as domain/task
analysis, or model checking applied to planning models, but
in a form quite different from previous work (e. g. [Fox and
Long, 1998; Rintanen, 2000; Vaquero et al., 2013]).

8 Conclusion
Eifler et al. [2020] introduced a framework approaching plan-
space explanation as the identification of plan-property de-
pendencies. We have extended their machinery to LTL plan
properties, and introduced algorithms vastly improving com-
putational performance. This provides a robust basis from
which the framework can be further extended.

Future directions include temporal planning; answering
deeper “why” questions (why does a plan-property entailment
hold?); automatically identifying plan properties of interest in
the given task/to a given user; and case studies in applications.
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